欢迎登录材料期刊网

材料期刊网

高级检索

采用静电纺丝技术成功制备了以5种脂肪酸二元低共熔混合物(LA-MA、LA-SA、MA-PA、MA-SA、PA-SA)为固液相变材料,聚对苯二甲酸乙二酯(PET)为支撑材料的定形相变复合纤维。研究了不同种类的脂肪酸二元低共熔物对复合相变纤维的形貌结构、储热性能以及力学性能的影响。研究结果表明这5种定形相变复合纤维的表面均呈现褶皱的形貌特征,同时纤维直径也明显增大。热分析结果表明当改变纤维中脂肪酸二元低共熔物的种类时,复合相变纤维的熔化温度和熔化焓值均随之而变化,其中熔化温度最低为33.23℃,最高为52.82℃,熔化焓值最低为62.75kJ/kg,最高为94.76kJ/kg。力学性能测试结果表明,由于脂肪酸二元低熔物的加入复合相变纤维的拉伸强度减小,断裂伸长率增大。

Form-stable phase change fibers based on binary fat{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"金刚石薄膜有着高的热导率,高的介质击穿场强,高的载流子迁移率以及宽的禁带等优点,是非常理想的功能材料。掺杂使金刚石薄膜具有独特的电学和热学性能,使其在半导体领域具有广阔的应用前景,近年来成为国内外研究的热点之一。综述了金刚石薄膜 P 掺杂和 N 掺杂的研究现状,对金刚石薄膜 N 掺杂研究中存在的问题进行了分析和探索,并对 N 金刚石的前景进行了展望。","authors":[{"authorName":"龚春生","id":"e25c1a21-5b6b-4a63-a2a5-082914ceb301","originalAuthorName":"龚春生"},{"authorName":"李尚升","id":"3d11ad9e-d15c-4aca-b2a1-9bb3906de831","originalAuthorName":"李尚升"},{"authorName":"张贺","id":"3e2fbb8d-453f-46ac-b782-0c1cf3b90efa","originalAuthorName":"张贺"}],"doi":"10.11896/j.issn.1005-023X.2016.09.006","fpage":"36","id":"53f7ad38-4c35-44b1-b902-540509c33a4d","issue":"9","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"b99e0e5b-b0c5-4c88-80f9-acacfe07e034","keyword":"金刚石薄膜","originalKeyword":"金刚石薄膜"},{"id":"cd3f0b70-f309-48db-9e3b-da6fa91f986a","keyword":"P ","originalKeyword":"P 型"},{"id":"ed2408dd-61c4-4d13-9996-ac5efa889514","keyword":"N ","originalKeyword":"N 型"}],"language":"zh","publisherId":"cldb201609006","title":"P和N金刚石薄膜研究进展","volume":"30","year":"2016"},{"abstractinfo":"ZnO薄膜是一种应用广泛的半导体材料.近几年来,随着对ZnO的光电性质及其在光电器件方面应用的开发研究,ZnO薄膜成为研究热点之一.制备掺杂的pZnO是形成同质p-n结以及实现其实际应用的重要途径.近来已在pZnO及其同质结发光二极管(LEDs)研究方面取得了较大的进展.目前报道的pZnO薄膜的电阻率已降至10-3 Ω·cm量级.得到了具有较好非线性伏安特性的ZnO同质p-n结和紫外发光LED.本文就其最新进展进行了综述.","authors":[{"authorName":"盛苏","id":"bd0d08f6-7bf8-4e82-ab12-9010b7bf2852","originalAuthorName":"盛苏"},{"authorName":"方国家","id":"6865cc2a-f49b-487a-89f7-daecfa50bbff","originalAuthorName":"方国家"},{"authorName":"袁龙炎","id":"edfd6b96-c696-4872-880e-d6cb01762db0","originalAuthorName":"袁龙炎"}],"doi":"10.3969/j.issn.1005-0299.2006.06.020","fpage":"637","id":"fefb0a0e-2d58-47a6-8e0f-051a492b03d3","issue":"6","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"e5ec00a3-aba6-40a1-b1c4-3c8e2eaed165","keyword":"ZnO薄膜","originalKeyword":"ZnO薄膜"},{"id":"cf439f33-7eda-461c-be88-93d32089a4e8","keyword":"p掺杂","originalKeyword":"p型掺杂"},{"id":"8cbec4e6-3b2b-44ab-a43c-b1df1de04267","keyword":"同质p-n结","originalKeyword":"同质p-n结"}],"language":"zh","publisherId":"clkxygy200606020","title":"pZnO薄膜研究进展","volume":"14","year":"2006"},{"abstractinfo":"ZnO薄膜作为一种多功能半导体材料,近年来一直受到广泛关注.然而,如何制备高质量的pZnO薄膜是实现其实用化的关键.概括了p掺杂困难的原因,并指出Ⅲ-Ⅴ族元素共掺杂可能是p掺杂的最好方法.简单回顾了ZnO薄膜p掺杂的研究现状,并对今后的发展趋势进行了展望.","authors":[{"authorName":"李驰平","id":"62afb121-f485-4b95-a732-2f40371a2b2c","originalAuthorName":"李驰平"},{"authorName":"张铭","id":"bdaa3cf2-3970-4b19-a843-84950b2839f4","originalAuthorName":"张铭"},{"authorName":"宋雪梅","id":"4faa11d0-e254-49d2-9960-512ad55750ad","originalAuthorName":"宋雪梅"},{"authorName":"王波","id":"5fe242e1-a485-411f-a481-f7b97fe0f53d","originalAuthorName":"王波"},{"authorName":"李彤","id":"76f20d59-50b8-4bbe-af9b-50b3578431e8","originalAuthorName":"李彤"},{"authorName":"严辉","id":"5d4e91b8-415b-4af3-b857-cddf38c1ba35","originalAuthorName":"严辉"}],"doi":"","fpage":"297","id":"0f016fdd-38f2-481c-823c-40349d04bd12","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"caca69fd-3b35-4729-8f56-7a6650c66091","keyword":"ZnO薄膜","originalKeyword":"ZnO薄膜"},{"id":"2b4e4700-9374-40d8-ab54-ca8559925e8f","keyword":"p掺杂","originalKeyword":"p型掺杂"},{"id":"54baa584-2149-43bb-a6ab-dbb63cfe83fe","keyword":"共掺杂方法","originalKeyword":"共掺杂方法"}],"language":"zh","publisherId":"cldb2007z1090","title":"ZnO薄膜p掺杂的研究进展","volume":"21","year":"2007"},{"abstractinfo":"随着近年来各种形貌ZnO纳米材料的生长及ZnO纳米器件的研究,ZnO纳米材料的p掺杂逐渐成为研究的重点之一.主要介绍了ZnO纳米材料的p掺杂及其器件研究进展,简要讨论了当前掺杂研究的局限,展望了今后的发展方向.","authors":[{"authorName":"唐海平","id":"a7e2f6ca-9483-489c-aa51-36d780478ae1","originalAuthorName":"唐海平"},{"authorName":"马权","id":"a3b34e34-e450-44c1-9e36-5adf38f24399","originalAuthorName":"马权"},{"authorName":"何海平","id":"aaf9be13-709d-4f50-a079-52bc37e3e885","originalAuthorName":"何海平"},{"authorName":"叶志镇","id":"207382e5-dcc0-46d0-ab46-e82d51b4933a","originalAuthorName":"叶志镇"},{"authorName":"","id":"b73fc60d-1098-49d6-8242-5b566ce8d243","originalAuthorName":""}],"doi":"","fpage":"44","id":"4ab7f501-93af-4d05-a7d3-4451ab8b700e","issue":"15","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"1b54e795-ffa4-41a5-832e-02c3b0b52e3c","keyword":"ZnO","originalKeyword":"ZnO"},{"id":"b9f6e97c-5511-4615-a06c-5215de774272","keyword":"纳米材料","originalKeyword":"纳米材料"},{"id":"5b010277-7f46-40a9-8132-17191e65ca78","keyword":"p掺杂","originalKeyword":"p型掺杂"}],"language":"zh","publisherId":"cldb201015009","title":"ZnO纳米材料的p掺杂研究进展","volume":"24","year":"2010"},{"abstractinfo":"应用射频反应磁控溅射的方法,将ZnO薄膜沉积于高磷掺杂的n+Si衬底上.在沉积和后退火过程中,磷向ZnO薄膜扩散并被激活,使ZnO薄膜由n转化为p,从而形成pZnO薄膜.X射线衍射分析(XRD)证明了所制备的ZnO薄膜都是高c轴取向的六角纤锌矿结构的薄膜.电学I-V关系曲线的整流特性和空穴浓度≥1.78×1018 /cm3的霍耳效应测试结果证明了pZnO薄膜的形成.","authors":[{"authorName":"丁瑞钦","id":"a7379117-f255-4d14-947c-f23d170207a8","originalAuthorName":"丁瑞钦"},{"authorName":"朱慧群","id":"7eea6695-1015-4f92-b657-3043899e9ad3","originalAuthorName":"朱慧群"},{"authorName":"曾庆光","id":"cf5fa165-df5b-43ca-9a95-fec6f02cd606","originalAuthorName":"曾庆光"},{"authorName":"林民生","id":"716ed985-19d5-446a-94d7-8377e7f8aa49","originalAuthorName":"林民生"},{"authorName":"冯文胜","id":"bbbd0294-59d5-4fa2-8a03-162ef483b95a","originalAuthorName":"冯文胜"},{"authorName":"梁毅斌","id":"3ef55456-c276-4ee4-8948-1a084670841a","originalAuthorName":"梁毅斌"},{"authorName":"梁满堂","id":"314fe703-17df-4232-82cd-0af003f85660","originalAuthorName":"梁满堂"},{"authorName":"梁达荣","id":"b5020cf4-cb9d-4aa6-befa-0c603e954c72","originalAuthorName":"梁达荣"}],"doi":"10.3969/j.issn.1000-985X.2007.04.031","fpage":"859","id":"fa3d036b-b148-4bec-be15-23c94f2e1217","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"6dba5921-2590-4fa7-bb60-0ec846d54505","keyword":"磷扩散","originalKeyword":"磷扩散"},{"id":"4aac7047-020c-49d9-ad7d-330ba1764198","keyword":"pZnO薄膜","originalKeyword":"p型ZnO薄膜"},{"id":"d46e3ea9-2650-4306-b0a9-be3f19a15249","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"1296ee47-bba9-434f-a73b-7fbf7089dac2","keyword":"异质ZnO p-n结","originalKeyword":"异质ZnO p-n结"}],"language":"zh","publisherId":"rgjtxb98200704031","title":"磷扩散法制备PZnO薄膜","volume":"36","year":"2007"},{"abstractinfo":"对NSi80Ge20(P4)x及PSi80Ge20Bx固溶体合金的化学计量比进行了研究,采用已总结出的最佳工艺条件,制备了一系列NP固溶体合金,并比较了各系列样品的热电性能.结果表明,x=1.5的NSi80Ge20(P4)x固溶体合金具备良好的热电性能,与未掺杂Si80Ge20固溶体合金相比,最高热电优值ZT为0.651,提高了3.34倍.x=1.5的PSi80Ge20Bx固溶体合金也具备较佳的热电性能,最高热电优值(ZT)值为0.538.","authors":[{"authorName":"毛斐","id":"c20ac18a-a2bb-4da5-931b-c3a70e4686b8","originalAuthorName":"毛斐"},{"authorName":"吴振兴","id":"70900cd6-8983-42db-b4d4-c8ba5f91f9ce","originalAuthorName":"吴振兴"},{"authorName":"汤皎宁","id":"a66f91c6-2e7e-4bb0-b817-d900360f102c","originalAuthorName":"汤皎宁"},{"authorName":"王涵","id":"f00d1ef9-8560-403a-8b50-b9f2e56cfdd5","originalAuthorName":"王涵"},{"authorName":"刘正楷","id":"a754afa3-2150-4ee7-9882-dc2d04956420","originalAuthorName":"刘正楷"},{"authorName":"龚晓钟","id":"fd846d93-76ad-45a3-9979-1e6ec1483bc0","originalAuthorName":"龚晓钟"}],"doi":"","fpage":"6","id":"50a515d5-9656-4ab9-9841-f9e9592ba332","issue":"7","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"5de692af-dec2-4d4a-b0de-f82cb5bde40a","keyword":"热电材料","originalKeyword":"热电材料"},{"id":"4997c3ff-0488-48e0-83b9-4bd5d684d0cc","keyword":"Si80Ge20","originalKeyword":"Si80Ge20"},{"id":"aeced09a-bafb-46ff-b07f-c3d14b67ea09","keyword":"粉末冶金","originalKeyword":"粉末冶金"},{"id":"6c7cce7b-52d5-430b-b124-267e4707d97e","keyword":"热电性能","originalKeyword":"热电性能"}],"language":"zh","publisherId":"jsrclxb201307002","title":"NPSi80Ge20合金制备及热电性能","volume":"34","year":"2013"},{"abstractinfo":"ZnO基注入式发光二极管和激光器件的研究目前仍处于初级阶段,即pZnO和ZnOp-n结的制备与特性研究.由于ZnOO薄膜中存在较强的自补偿机制,使得很难有效地施行p元素的掺杂.本文介绍了目前国际上通用的掺杂方法,对不同方法制备的pZnO和ZnOp-n结的特点进行了比较分析,并讨论了目前生长高质量的突变型ZnOp-n结所面临的问题.","authors":[{"authorName":"许小亮","id":"69729b06-e0fc-44f7-a10a-fa414c226d83","originalAuthorName":"许小亮"},{"authorName":"杨晓杰","id":"12d02fb4-f90a-41fb-a320-52da71680ce2","originalAuthorName":"杨晓杰"},{"authorName":"付竹西","id":"587f7dfc-b922-4ae2-8219-67e14fda5961","originalAuthorName":"付竹西"}],"doi":"","fpage":"121","id":"a0390ea7-ef32-49d3-98a1-55f9296730da","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"f51445db-9916-4def-a6b9-2f90e8641367","keyword":"ZnO","originalKeyword":"ZnO"},{"id":"a73346cf-978a-4934-b79d-1ee3a70317f5","keyword":"同质p-n结","originalKeyword":"同质p-n结"},{"id":"4fd88ac4-e761-4bb5-8ec8-5e9a641d72ec","keyword":"激光器件","originalKeyword":"激光器件"}],"language":"zh","publisherId":"gncl200302003","title":"pZnO和ZnO同质p-n结的研究进展","volume":"34","year":"2003"},{"abstractinfo":"ZnO是一种新型的II-VI族半导体材料,具有许多优异的性能.但由于ZnO存在诸多的本征施主缺陷(如空位氧Vo和间隙锌Zni),对受主产生高度自补偿作用,天然为n半导体,难以实现p转变.ZnO薄膜p掺杂的实现是ZnO基光电器件的关键技术,也一直是ZnO研究中的主要课题,目前已取得重大进展,文章对此进行了详细阐述.","authors":[{"authorName":"叶志镇","id":"38293211-5568-4dfb-ac58-1bd0d5c4c542","originalAuthorName":"叶志镇"},{"authorName":"张银珠","id":"cb30d89d-0d66-4bf3-9a06-b27e701bc6fa","originalAuthorName":"张银珠"},{"authorName":"徐伟中","id":"940a2b73-2434-4383-bc01-74f6237235aa","originalAuthorName":"徐伟中"},{"authorName":"吕建国","id":"6fb75618-5e49-43ec-9202-6a183e9594e9","originalAuthorName":"吕建国"}],"categoryName":"|","doi":"","fpage":"11","id":"97311fed-abbb-49d0-b94c-51b372a48415","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"0d96a5cf-8513-4941-90ed-b03041b1ea25","keyword":"ZnO薄膜","originalKeyword":"ZnO薄膜"},{"id":"12f60ba2-940f-4d57-95f1-1a8619f86f14","keyword":" p-type ZnO","originalKeyword":" p-type ZnO"},{"id":"8aae6e98-e4a5-46e3-830a-855d4198ac1f","keyword":" property","originalKeyword":" property"}],"language":"zh","publisherId":"1000-324X_2003_1_1","title":"ZnO薄膜p掺杂的研究进展","volume":"18","year":"2003"},{"abstractinfo":"ZnO是一种新型的Ⅱ-Ⅵ族半导体材料,具有许多优异的性能.但由于ZnO存在诸多的本征施主缺陷(如空位氧Vo和间隙锌Zni),对受主产生高度自补偿作用,天然为n半导体,难以实现p转变.ZnO薄膜p掺杂的实现是ZnO基光电器件的关键技术,也一直是ZnO研究中的主要课题,目前已取得重大进展,文章对此进行了详细阐述.","authors":[{"authorName":"叶志镇","id":"8c9ba96a-2c24-4f48-85c1-d564863873a2","originalAuthorName":"叶志镇"},{"authorName":"张银珠","id":"76ddaa1a-21af-480f-a522-435e1e8544d7","originalAuthorName":"张银珠"},{"authorName":"徐伟中","id":"ec1c9600-93bf-4aeb-9724-b2dce85b7589","originalAuthorName":"徐伟中"},{"authorName":"吕建国","id":"ff09f58d-179e-4970-a0a1-b7d329ac3ea4","originalAuthorName":"吕建国"}],"doi":"10.3321/j.issn:1000-324X.2003.01.002","fpage":"11","id":"e79477bb-f576-495a-b0d2-9bc421a096b8","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"bbeca2f5-2374-4d7c-a6a6-7242520729cd","keyword":"ZnO薄膜","originalKeyword":"ZnO薄膜"},{"id":"b6881d30-34f9-4e9d-bf3a-301e4d885754","keyword":"p掺杂","originalKeyword":"p型掺杂"},{"id":"1ba3d1f9-e9eb-4cf2-ab7b-5ad48cf69eae","keyword":"特性","originalKeyword":"特性"}],"language":"zh","publisherId":"wjclxb200301002","title":"ZnO薄膜p掺杂的研究进展","volume":"18","year":"2003"},{"abstractinfo":"采用脉冲激光沉积(PLD)方法在石英衬底上制备pNa掺杂ZnMgO薄膜,薄膜在氮气气氛中600℃退火60 s,具有较好的光电性能.在室温下分别用波长254nm的紫外光和波长630nm的红色激光对样品进行了光电导性能测试.两种光照下,光电流均瞬间上升,且光响应度与外加偏压具有线性相关性.紫外光照下pNa掺杂ZnMgO薄膜的光电流变化比红色激光照射下要显著.","authors":[{"authorName":"薛雅","id":"b4174448-cbd4-4a83-bfd1-f4f9c3d174f1","originalAuthorName":"薛雅"},{"authorName":"叶志镇","id":"4eeb8b1b-2151-4330-9d1b-1778776c6e63","originalAuthorName":"叶志镇"},{"authorName":"陈凌翔","id":"d45e19eb-0723-4828-b066-c4f759e7cabe","originalAuthorName":"陈凌翔"},{"authorName":"叶春丽","id":"e40f238a-c5a5-497c-bf9a-b6634d177320","originalAuthorName":"叶春丽"}],"doi":"","fpage":"632","id":"15d35bd5-8d21-4956-b989-81ccf2febded","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"839428c2-9364-4797-8f45-53b4ce5a8c6f","keyword":"Na掺杂","originalKeyword":"Na掺杂"},{"id":"9ecbe6d4-04d1-4bbc-8d3b-67cb429f9bdc","keyword":"pZnMgO","originalKeyword":"p型ZnMgO"},{"id":"18097dd9-edff-4542-9610-4a74027e00a5","keyword":"光电导","originalKeyword":"光电导"}],"language":"zh","publisherId":"clkxygc201305002","title":"pNa掺杂ZnMgO薄膜的光电导性能","volume":"31","year":"2013"}],"totalpage":2668,"totalrecord":26678}