对圆棒试件在不同初始应力下的单轴拉伸应力松弛过程进行了有限元模拟.假定材料的蠕变行为遵循Norton蠕变法则:ε=Bσ(ε为蠕变速率,B为蠕变常数,σ为施加的应力),通过对应力松弛曲线的分析和推导,提出了2种通过应力松弛试验来确定材料蠕变参数的新方法.第1种方法仅需要单次的应力松弛试验即可得到材料的蠕变应力指数;第2种方法需首先通过外推法求得初始应力松弛速率,进而通过多条应力松弛曲线求得蠕变应力指数.提出的方法为高温材料蠕变力学性能的测定提供了一条新思路.
参考文献
[1] | Shi J Z;Endo T .[J].Scripta Metallurgica et Materialia,1995,32:1159. |
[2] | Ule B;Sustar T;Dobes F et al.[J].Nuclear Engineering and Design,1999,192:1. |
[3] | Kim H J .[J].Engineering Failure Analysis,2005,12:578. |
[4] | Yan W Z;Wen S F;Liu J et al.[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2010,527:1850. |
[5] | Sastry D H .[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2005,409:67. |
[6] | Li JCM. .Impression creep and other localized tests[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1-2 Special Issue SI):23-42. |
[7] | 刘勇俊,赵彬,许宝星,岳珠峰.平头压痕试验结合有限元法确定材料蠕变参数[J].稀有金属材料与工程,2007(12):2114-2118. |
[8] | Ingman D;Michlin Y .[J].Transactions of the ASME,2002,124:260. |
[9] | Morscher G N;Dicarlo J A .[J].Journal of the American Ceramic Society,1992,75:136. |
[10] | Shimoda K;Kondo S;Hinoki T .[J].Journal of the European Ceramic Society,2010,30:2643. |
[11] | Abe, K.;Nogami, S.;Hasegawa, A.;Nozawa, T.;Hinoki, T. .Study on stress relaxation behavior of silicon carbide by BSR method[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,2011(1/3):356-358. |
[12] | Hibbit D;Karlsson B;Sorenson P.ABAQUS Standard User's Manual[M].Pawtucket,Rhode Island:USA HKS Inc,2003 |
[13] | 郭进全,轩福贞,王正东,涂善东.基于短时应力松弛试验的蠕变行为预测方法[J].中国电机工程学报,2009(11):92-95. |
[14] | Xu B X;Yue Z F;Eggeler G .[J].Acta Materialia,2007,55(18):6275. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%