欢迎登录材料期刊网

材料期刊网

高级检索

采用能描述非均质性的具有内部长度的梯度塑性理论推导了颈缩区域的非均匀的塑性拉伸应变.描述了颈缩区域的外形轮廓,并计算了当颈缩区域的体积保持不变时的颈缩区域的塑性伸长.由于外形轮廓已被确定,因而导出了真应力的表达式.目前得到的关于真应力-真应变曲线解析解的优越性在于:所需要的参数具有明确的物理意义,如:采用软化模量描述脆性;采用弹性模量描述弹性;采用特征长度描述材料的非均质性;模型中含有标定长度可用于研究结构的尺寸效应等.将目前得到的解析解与前人通过实验得到的钛及Ti-6Al-4V的真应力-真应变曲线进行了对比,验证了本文考虑微小结构效应及局部化颈缩的真应力-真应变曲线的解析解.另外,还发现Ti-6Al-4V的脆性及非均质性要高于商业纯钛.前人试验发现的局部化带在2种材料内部的传播速度的差异可以通过它们具有不同的脆性得到解释.

Gradient-dependent plasticity having characteristic length reflecting heterogeneity was used to deduce analytically non-uniform plastic strain in necked zone, and the external shape of the zone was described because the plastic strain and the plastic extension of the zone regardless of change of volume of the zone was calculated. In addition, the true stress was deduced because the minimum sectional area in the zone can be determined according to the external shape. The advantage of the present analytical results for true stress and true strain curve is that the related parameters have specific physical meanings,such as softening modulus describing brittleness, elastic modulus considering elasticity, characteristic length reflecting the heterogeneity, the gauge length involved in the present model to study the geometrical size effect. Comparisons of the existing experimental results for titanium and Ti-6Al-4V and the present analytical results were carried out and the new model considering microstructures and localized necking was verified. It is found that the brittleness and heterogeneity of Ti-6Al-4V are higher than those of CP titanium. The differences of the propagation velocity of the localized band in two kinds of materials are explained in terms of the different brittleness.

参考文献

[1] Ebrahimi F;Hoyle T G .Brittle-to-Ductile Transition in Polycrystalline NiAI[J].Acta Materialia,1997,45(10):4193.
[2] D. Jia;Y. M. Wang;K. T. Ramesh;E. Ma;Y. T. Zhu;R. Z. Valiev .Deformation behavior and plastic instabilities of ultrafine-grained titanium[J].Applied physics letters,2001(5):611-613.
[3] Zhang S;Tam S C .Mechanical Alloying of a TiC-TiN Ceramic System[J].Journal of Materials Processing Technology,1997,67(1-3):112.
[4] Yuan JM.;Shim VPW. .Tensile response of ductile alpha-titanium at moderately high strain rates[J].International Journal of Solids and Structures,2002(1):213-224.
[5] Brunet M;Morestin F .Experimental and Analytical Necking Studies of Anisotropic Sheet Metals[J].Journal of Materials Processing Technology,2001,112(2-3):214.
[6] S. NEMAT-NASSER;W. G. GUO;J. Y. CHENG .MECHANICAL PROPERTIES AND DEFORMATION MECHANISMS OF A COMMERCIALLY PURE TITANIUM[J].Acta materialia,1999(13):3705-3720.
[7] 曹富荣,崔建忠.超轻Mg-8Li合金超塑性力学性能的研究[J].稀有金属材料与工程,1997(02):27-30.
[8] V.F.Nesterenko;M.A.Meyers;T.W.Wright .Self-organization in the initiation of adiabatic shear bands[J].Acta materialia,1998(1):327-340.
[9] Xue Q;Meyers M A;Nesterenko V F.Self-Organization of Shear Bands in Titanium and Ti-6Al-4V Alloy[J].Acta Materialia,2002:50,575.
[10] 沈健,李德峰.铝锂合金高温塑性变形流变应力研究[J].稀有金属材料与工程,1997(05):26-29.
[11] 李明强,何全波,张汝彦.Zr-4合金棒真应力-真应变曲线的测试及处理[J].稀有金属材料与工程,1989(04):48-51.
[12] de Borst R;Muhlhaus H B .Gradient-dependent Plasticity:Formulation and Algorithmic Aspects[J].International Journal for Numerical Methods in Engineering,1992,35(03):521.
[13] Zhang H W;Schrefler B A .Gradient-Dependent Plasticity Model and Dynamic Strain Localization Analysis of Saturated and Partially Saturated Porous Media:one Dimensional model[J].European Journal of Mechanics A/Solids,2000,19(03):503.
[14] Wang Xuebin;Pan Yishan.[A].New Jersey: Rinton Press,2002:89.
[15] 王学滨,杨梅,潘一山.基于梯度塑性理论的单向拉伸低碳钢试样颈缩分析[J].塑性工程学报,2002(03):55-57.
[16] 王学滨,潘一山,马瑾.剪切带内部应变(率)分析及基于能量准则的失稳判据[J].工程力学,2003(02):111-115.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%