欢迎登录材料期刊网

材料期刊网

高级检索

目的:研究酸(HF 和 HNO3)、碱(NaOH)腐蚀液对晶体硅制绒的影响。方法通过改变 NaOH浓度、异丙醇浓度、腐蚀时间研究单晶硅片腐蚀,通过改变酸溶液浓度比研究多晶硅片腐蚀,通过分析微观形貌及表面反射率等考察制备晶体硅制绒工艺参数。结果单晶硅最佳的腐蚀液配比为:NaOH 质量浓度15 g / L,热碱温度80℃,异丙醇体积分数15%~20%,腐蚀时间10 min。在最优化参数下,晶体硅绒表面金字塔大小均匀,高度约为5μm,相邻金字塔间彼此相连,硅表面反射率降低至15%。在 V(HF):V(HNO3): V(CH3 COOH)=10:1:10,腐蚀速率为2μm/ min 时,晶体硅绒表面呈现较好的沟壑状绒面结构。结论溶液酸碱性的强弱和异丙醇对晶体硅制绒有较大影响,并且直接影响晶体硅的表面反射率。

Objective To study the effect of the mixture solution of NaOH, HF and HNO3 on the texture of crystalline silicon wafers. Methods The monocrystalline silicon wafer was corroded by changing NaOH concentration, isopropyl alcohol (IPA) con-centration and corrosion time. The polycrystalline silicon wafer (Poly-Si) was corroded by changing the concentration of acid solu-tion. The texture was analyzed by means of the SEM images and the surface reflectance of silicon. Results The optimum corrosion parameters were 15 g/ L for NaOH, 15% ~ 20% for IPA volume fraction, 10 minutes for corrosion time at 80 ℃ for thermokalite. At these optimized parameters, the size of pyramids was even with height of about 5 μm. The adjacent pyramids were linked to each other and the surface reflectance of silicon was reduced to 15% . The corrosion rate was 2 μm/ min at the mixture solution of V(HF) : V(HNO3 ) : V(CH3 COOH)= 10 : 1 : 10, and the texture showed like ravine. Conclusion The acid-base property of the solution and the addition of IPA have significant influence on the texture of crystalline silicon and directly affect the surface reflec-tance of silicon.

参考文献

[1] 王鹤,杨宏,于化丛,吴洪才,陈光德.单晶硅太阳电池纳米减反射膜的研究[J].固体电子学研究与进展,2003(03):316-319.
[2] 李怀辉,王小平,王丽军,刘欣欣,梅翠玉,刘仁杰,江振兴,赵凯麟.硅半导体太阳能电池进展[J].材料导报,2011(19):49-53.
[3] 杨文华,李红波,吴鼎祥.太阳电池减反射膜设计与分析[J].上海大学学报(自然科学版),2004(01):39-42.
[4] 卢景宵;孙晓峰;王海燕 等.化学腐蚀法制备多晶硅绒面[J].太阳能学报,2004,25(02):138-141.
[5] 林喜斌,林安中.PECVD在多晶硅上沉积氮化硅膜的研究[J].中国稀土学报,2003(z1):162-163.
[6] 王彦青,王秀峰,江红涛,门永.硅太阳能电池减反射膜的研究进展[J].材料导报,2012(19):151-156.
[7] HAHN G;ZECHNER C;RINIO M et al.Enhanced Carrier Collection Observed in Mechanically Structured Silicon with Small Diffusion Length[J].Journal of Applied Physics,1999,86:7179-7182.
[8] Douglas S. Ruby;Saleem Zaidi;S. Narayanan;Satoshi Yamanaka;Ruben Balanga .RIE-Texturing of Industrial Multicrystalline Silicon Solar Cells[J].Journal of Solar Energy Engineering,2005(1):146-149.
[9] WEBERL K J;BLAKERSL A W;STOCKSL M J.Thin Silicon Cells Using Novel Lase Process[A].Japan:[s.n.],2003:1262-1264.
[10] MARSTEIN E S;SOLHEIM H J;WRIGHT D N.Acid-ic Texturing of Multicrystalline Silicon Wafers[A].USA:[s.n.],2005:309-313.
[11] 樊丽梅,文九巴,赵胜利,祝要民.化学蚀刻单晶硅及其表面形貌研究[J].表面技术,2007(01):19-21.
[12] Kim JM;Kim YK .The enhancement of homogeneity in the textured structure of silicon crystal by using ultrasonic wave in the caustic etching process[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2004(2):239-247.
[13] 李海玲,赵雷,刁宏伟,周春兰,王文静.单晶硅制绒中影响金字塔结构因素的分析[J].人工晶体学报,2010(04):857-861.
[14] 叶建雄,张发云.多晶硅太阳电池表面织构工艺优化[J].材料导报,2011(06):143-145,149.
[15] 李燕芝;周水生;刘东林 .多晶硅制绒工艺研究[J].人工晶体学报,2012,41(增刊):368-371.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%