欢迎登录材料期刊网

材料期刊网

高级检索

以化学气相渗透(CVI)技术制备的2D C/SiC复合材料为研究对象,探讨复合材料在700、1000和1300益空气环境中发生不同形式和不同程度氧化损伤后的阻尼行为变化。采用扫描电子显微镜( SEM)观察和分析复合材料的微结构损伤,采用动态力学分析仪(DMA)测试复合材料损伤前后的阻尼性能。结果表明:在700益和1000益空气环境中,随着氧化时间的延长,2D C/SiC复合材料的阻尼性能先增大后降低;而在1300益空气环境中,阻尼性能变化较小,且随氧化时间的延长未表现出明显的规律性。这是由于C/SiC复合材料的阻尼由炭纤维、热解炭界面和碳化硅基体,以及它们之间的相互作用共同形成。炭纤维和热解炭界面的氧化损伤会对复合材料阻尼特性产生两种影响机制,其一是使复合材料阻尼性能增大的机制,主要来自于热解炭界面相损耗引起的界面结合强度降低;其二是使复合材料阻尼性能降低的机制,主要来自于纤维的损耗和界面区的过度破坏。而碳化硅氧化生成的二氧化硅主要是通过影响碳相的氧化程度来影响复合材料的阻尼性能。

A carbon fiber preform was chemical vapor infiltrated with a pyrocarbon ( PyC) interphase and a SiC matrix, and then coated with a SiC outer layer by chemical vapor deposition to prepare 2D C/SiC composites with a density of 2. 1 g/cm3 . The comˉ posites were oxidized at 700, 1000, 1300℃ for 2, 5 and 10h, respectively. The damping behavior of the oxidized composites was measured by a dynamical mechanical analyzer and the microstructural damage produced by the oxidation was investigated by scanˉ ning electron microscopy. Results show that the damping of the composites oxidized at 700℃ and 1 000℃ increases initially and then decreases with increasing oxidation time while that of the composites oxidized at 1 300℃ is independent of the oxidation time. The damping capacity of the C/SiC composites is determined by the carbon fibers, PyC interphase, SiC matrix and their interaction. The oxidation of the composites increases the damping by weakening the interfacial bonding due to the oxidation of PyC during the initial stage of oxidation, and decreases the damping by the oxidation loss of carbon fibers and excessive damage of the PyC interˉ phase during the latter stages of oxidation. SiO2 formed at 1 300℃ by the oxidation of SiC fills the voids produced by carbon oxidaˉ tion, which increases the dampingand compensates for the decrease of damping produced by carbon loss and excess damage of the PyC interphase.

参考文献

[1] Beyer S;SchmidtˉWimmer S;Quering K.Technology status of fuel cooled ceramic matrix composites for dualˉmode ramjet(DMR)and liquid rocket engine(LRE)applications[J].AIAA,2012:5877.
[2] Min J B;Harris D L;Ting J M.Advances in ceramic matrix composite blade damping characteristics for aerospace turbomachˉ inery applications[J].AIAA,2011:1784.
[3] R. Naslain .Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview[J].Composites science and technology,2004(2):155-170.
[4] M. Schoebel;W. Altendorfer;H.P. Degischer;S. Vaucher;T. Buslaps;M. Di Michiel;M. Hofmann .Internal stresses and voids in SiC particle reinforced aluminum composites for heat sink applications[J].Composites science and technology,2011(5):724-733.
[5] Sang Yup Kim;Toshio Tanimoto;Kenji Uchino .Effects of PZT particle-enhanced ply interfaces on the vibration damping behavior of CFRP composites[J].Composites, Part A. Applied science and manufacturing,2011(10):1477-1482.
[6] Shafi Ullah Khan;Chi Yin Li;Naveed A. Siddiqui;Jang-Kyo Kim .Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes[J].Composites science and technology,2011(12):1486-1494.
[7] Wu, Y.W.;Wu, K.;Deng, K.K.;Nie, K.B.;Wang, X.J.;Hu, X.S.;Zheng, M.Y. .Damping capacities and tensile properties of magnesium matrix composites reinforced by graphite particles[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2010(26):6816-6821.
[8] C. Kyriazoglou;F. J. Guild .Finite element prediction of damping of composite GFRP and CFRP laminates - a hybrid formulation -vibration damping experiments and Rayleigh damping[J].Composites science and technology,2006(3/4):487-498.
[9] Birman V.;Byrd LW. .Damping in ceramic matrix composites with matrix cracks[J].International Journal of Solids and Structures,2003(16):4239-4256.
[10] Qing Zhang;Laifei Cheng;Wei Wang .Effect of Interphase Thickness on Damping Behavior of 2D C/SiC Composites[J].Materials Science Forum,2007(Pt.3):1531-1534.
[11] Zhang Q;Cheng LF;Wang W;Zhang LT;Xu YD .Effect of SiC coating and heat treatment on damping behavior of C/SiC composites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(1/2):254-258.
[12] 侯军涛,乔生儒,张程煜,张跃冰.高温热曝露对3D-C/SiC复合材料弯曲性能的影响[J].新型炭材料,2009(02):173-177.
[13] Lamouroux F;Camus G .Oxidation effects on the mechanical properties of 2D woven C/SiC composites[J].Journal of the European Ceramic Society,1994,14(02):177-188.
[14] Cheng L F;Xu Y D;Zhang L T et al.Oxidation behavior from room temperature to 1500益 of 3D C/SiC composites with different coatings[J].Journal of the American Ceramic Socieˉ ty,2002,85(04):989-991.
[15] Cheng Laifei .Oxidation behavior of three dimensional C/SiC composites in air and combustion gas environments[J].Carbon: An International Journal Sponsored by the American Carbon Society,2000(15):2103-2108.
[16] Yin XW.;Cheng LF.;Zhang LT.;Xu YD. .Oxidation behaviors of C/SiC in the oxidizing environments containing water vapor[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):47-53.
[17] Xiaowei Yin;Laifei Cheng;Litong Zhang .Oxidation behavior of 3D C/SiC composites in two oxidizing environments[J].Composites science and technology,2001(7):977-980.
[18] Lamouroux F;Camus G .Kinetics and mechanism of oxidation of 2D woven C/SiC composites:I. experimental approach[J].Journal of the American Ceramic Society,1994,77(08):2049-2057.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%