以粘红酵母菌Rhodotorula glutinis A Y 91015为材料,研究了不同传能线密度(LET)的C离子对粘红酵母菌的失活截面和突变截面,评估了不同LET的C离子对微生物的失活效应和突变效应.结果表明,C离子LET为120.0 keV/tim时,单个粒子对粘红酵母菌的失活截面最大,为4.37 um2,接近酵母菌细胞核的平均核截面;LET为96.0 keV/μm时,单个粒子对粘红酵母菌的突变截面最大.通过对C离子束致突变能力的分析发现,C离子在LET为58.2 keV/μm时突变能力最强,这一结果显示在经C离子辐照后存活下来的粘红酵母菌中,可以引起有效突变的最佳LET为58.2 keV/μm左右,此时所对应的碳离子能量约为35 MeV/u.这些结果表明,C离子对粘红酵母菌的最佳致死效应和最佳致突变效应存在于不同的能量区域.
参考文献
[1] | Mao Shuhong,Jin Genming,Wei Zengquan.Nuclear Techniques,2005,28(11):845 (in Chinese).(毛淑红,靳根明,卫增泉.核技术,2005,2801):845.) |
[2] | Ma Shuang,Li Wenjian,Wang Jufang.Acta Biophysica Sinica,2009,9(11):500(in Chinese).(马爽,李文建,王菊芳.生物物理学报,2009,901):500.) |
[3] | Guo C L,Wang J F,Jin X D.Nucl Instr and Meth,2007,B259:997. |
[4] | Jing X,Li W,Wang Z,et al.Nucl Instr and Meth,2009,B267:1837. |
[5] | Tokarova B,Amirtayev K G,Kozubek S,et al.Mutat Res,1989,227:199. |
[6] | Kiefer J.Advances in Space Research,1994,14:331. |
[7] | Baltschukat K,Horneck G.Radiat Environ Biophys,1991,30:87. |
[8] | Kozubek S,Ryznar L,Horneck Horneck G.Mutat Res,1994,309:17. |
[9] | Kiefer J.Advances in Space Research,2004,34:1278 |
[10] | He Haiyan,Tan Yongling,Tan Yongrong.Cereal and Feed Industry,2008,(10):29 (in Chinese).(何海燕,覃拥灵,覃勇荣.粮食与饲料工业,2008,(10)-29.) |
[11] | Wang J F,Li R M,Guo C L,et al.Radiat Res,2008,49:391. |
[12] | Kraft G.Progress in Particle and Nuclear Physics,2000,5473:45. |
[13] | Kozubek S,Ryznar L,Horneck G.Mutat..Res,1994,309:17. |
[14] | Weyrather W K,Ritter S,Scholz M,et al.Int J Radiat Biol,1999,75:1357. |
[15] | Wang J,Li W,Zhang Y.Plasma Science and Technology,2008,10:270. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%