通过单道次等温热压缩实验,分别采用Najafizadeh-Jonas加工硬化率模型和Cingara-McQueen流变应力模型研究了高性能桥梁钢A709 M-HPS485wf在温度为1273~1423K,应变速率为0.1~3s-1)变形条件下的奥氏体动态再结晶临界条件,获得了动态再结晶的临界应力与峰值应力比(σc/σp)及临界应变与峰值应变比(εc/εp),且由线性回归方法建立了该钢动态再结晶临界应力(σc)及临界应变(εc)与变形参数之间的定量关系.
参考文献
[1] | E.I.POLIAK;J.J.JONAS .A ONE-PARAMETER APPROACH TO DETERMINING THE CRITICAL CONDITIONS FOR THE INITIATION OF DYNAMIC RECRYSTALLIZATION[J].Acta materialia,1996(1):127-136. |
[2] | E. I. POLIAK;J. J. JONAS .Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation[J].ISIJ International,2003(5):684-691. |
[3] | Ryan N D;McQueen H J .Dynamic softening mechanisms in 304 austenitic stainless steel[J].Canadian Metallurgical Quarterly,1990,29(02):147-162. |
[4] | 马立强,袁向前,刘振宇,张丕军,焦四海,吴迪,王国栋.铌微合金钢动态再结晶的规律[J].钢铁研究学报,2006(09):47-50. |
[5] | Abbas NAJAFIZADEH;John J. JONAS .Predicting the Critical Stress for Initiation of Dynamic Recrystallization[J].ISIJ International,2006(11):1679-1684. |
[6] | 段兰,王春生.高性能钢桥在北美的研究及应用简介[J].建筑钢结构进展,2008(02):50-56. |
[7] | 郭桐,韦明,刘利香.新型耐候桥梁钢A709M-HPS485 W的开发[J].钢结构,2009(05):17-20. |
[8] | H. Mirzadeh;A. Najafizadeh .Prediction of the critical conditions for initiation of dynamic recrystallization[J].Materials & design,2010(3):1174-1179. |
[9] | 曹金荣,刘正东,程世长,杨钢,谢建新.应变速率和变形温度对T122耐热钢流变应力和临界动态再结晶行为的影响[J].金属学报,2007(01):35-40. |
[10] | Saden H. Zahiri;Chris H. J. Davies;Peter D. Hodgson .A Mechanical Approach to Quantify Dynamic Recrystallization in Poly-crystalline Metals[J].Scripta materialia,2005(4):299-304. |
[11] | Cingara A;McQueen H J .New formula for calculating flow curves from high temperature constitutive data for 300 austenitic steels[J].Journal of Materials Processing Technology,1992,36(01):31-42. |
[12] | 黄光杰,钱宝华,汪凌云,J.J.Jonas.AZ31镁合金初始动态再结晶的临界条件研究[J].稀有金属材料与工程,2007(12):2080-2083. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%