本文建立了蒙特卡洛法模拟散射参与性介质内辐射传递计算模型.对蒙特卡洛法的计算精度及运行时间进行了较为详细的分析,提出了几种判断计算精度的方法.同时,借助蒙特卡洛法模拟辐射传递过程,进行数值"辐射实验".利用该"实验结果"进行了物性反问题研究.在已知光学厚度的前提下,得到散射反照率与后半球辐射热流之间的单值函数关系.
参考文献
[1] | Edmundo N M;Vijay M;Mohammad N H N .Radiative Transfer in Arbitrarily-Shaped Axisymmetric Closures with Anisotropic Scattering Media[J].International Journal of Heat and Mass Transfer,2000,43(18):3275-3285. |
[2] | Seung Wook Baek;Do Young Byun;Shin Jae Kang .The combined Monte-Carlo and finite-volume method for radiation in a two-dimensional irregular geometry[J].International Journal of Heat and Mass Transfer,2000(13):2337-2344. |
[3] | HSU P F;Farmer J T .Benchmark Solution of Radiative Heat Transfer Within Nonhomogeneous Participating Media Using the Monte Carlo and YIX Method[J].ASME Journal of Heat Transfer,1997,119(01):185-188. |
[4] | Ruan LM.;Tan HP.;Yan YY. .A Monte Carlo (MC) method applied to the medium with nongray absorbing-emitting-anisotropic scattering particles and gray approximation[J].Numerical Heat Transfer, Part A. Application: An International Journal of Computation and Methodology,2002(3):253-268. |
[5] | 阮立明,郝金波,谈和平.蒙特卡洛法求二维矩形散射性介质内的辐射传递[J].燃烧科学与技术,2002(05):390-394. |
[6] | 刘德贵;费景高;于泳江.Fortran算法汇编[M].北京:国防工业出版社,1983 |
[7] | Modest M F.Radiative Heat Transfer[M].SingaporeMcGraw-Hill,1993 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%