欢迎登录材料期刊网

材料期刊网

高级检索

根据Zr-2合金的晶粒尺寸在不同热工艺参数(变形温度、变形程度、变形速率)下的12组实测数据,应用基于粒子群算法寻找最优参数的支持向量回归方法,建立了合金晶粒尺寸的预测模型.通过与模糊神经网络模型的结果进行比较,结果表明:基于相同的试验样本,支持向量回归预测模型的平均绝对误差和平均绝对百分误差都比模糊神经网络预测模型的小,而复相关系数大.这说明,支持向量回归预测模型预测精度比模糊神经网络模型要高,是简单而精确的建模方法,可用于优化热加工参数.

参考文献

[1] 訾炳涛,姚可夫,崔建忠,巴启先.铝合金凝固晶粒尺寸的人工神经网络研究[J].应用科学学报,2001(04):353-356.
[2] 刘芳,单德彬,吕炎.基于人工神经网络的2A70铝合金形变显微组织预测[J].上海理工大学学报,2008(04):395-399.
[3] 陈明和,谢兰生,周建华,左敦稳,王珉.基于BP神经网络的TC4钛合金超塑性变形后组织及性能预测研究[J].机械工程材料,2003(12):4-6,19.
[4] 刘文庆,雷鸣,耿迅,李强,周邦新.显微组织对Zr-Sn-Nb-Fe锆合金耐腐蚀性能的影响[J].材料热处理学报,2006(06):47-51.
[5] 梁建烈,唐轶媛,严嘉琳,朱其明,庄应烘,文国富.Zr-Sn-Nb-Fe合金金属间化合物及其α/β相变温度的研究[J].材料热处理学报,2009(01):32-35.
[6] 王娜,李长荣,杜振民,李静波.NiZr和NiZr2共晶温度的测定[J].材料热处理学报,2008(06):49-52,57.
[7] 李晴宇,杜继红,奚正平,李争显,杨升红.熔盐电解制备钛锆合金及其反应过程研究[J].稀有金属,2009(06):779-784.
[8] 林国庆,李颖,王新梅.基于模糊神经网络的Zr-2合金晶粒尺寸及流变应力模型[J].稀有金属材料与工程,2009(z1):464-467.
[9] Vapnik V.The Nature of Statistical Learning Theory[M].New York:springer-verlag,1995
[10] Liong S Y;Sivapragasam C .Flood stage forecasting with support vector machines[J].Journal of the American Water Resources Association,2002,38(01):173-186.
[11] Gavrish V V;Ganguli S B .Support vector machines as an efficient tool for high-dimensional data processing:Application to sub-storm forecasting[J].Journal of Geophysical Research-Space Physics,2001,106(A12):29911-29914.
[12] Hua SJ.;Sun ZR. .A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach[J].Journal of Molecular Biology,2001(2):397-407.
[13] C. Z. Cai;L. Y. Han;Z. L. Ji;X. Chen;Y. Z. Chen .SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence[J].Nucleic Acids Research,2003(13):3692-3697.
[14] Cai CZ;Han LY;Ji ZL;Chen YZ .Enzyme family classification by support vector machines.[J].Proteins: Structure, Function, and Genetics,2004(1):66-76.
[15] Wen Y F;Cai C Z;Liu X H et al.Corrosion rate prediction of 3C steel under different seawater environment based on support vector regression[J].Corrosion Science,2009,51(02):349-355.
[16] Tang J L;Cai C Z;Zhu X J et al.SVR-based predictive model for purity of the Mg-Al-hydrotalcite[J].Current Advances in Materials and Processes,2011,189:1482-1485.
[17] Kenned J,Eberhart.Particle swarm optimization[A].,1995:1942-1948.
[18] 周维智,孙晓洁,徐国涛.Mn18Cr18N钢护环生产工艺研究概况[J].大型铸锻件,2001(01):52-54.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%