材料导报, 2008, 22(z3): 310-312.
改性水镁石对聚丙烯/三元乙丙橡胶复合材料性能的影响
吴发盛 1, , 韦平 2, , 纳米TiO2/SiO2复合物.讨论了加水量、稳定剂、催化剂、乙醇用量、反应温度等工艺因素对制备过程的影响.用X射线衍射、红外光谱、比表面积仪等测试手段对纳米TiO2/SiO2复合粒子进行了表征.结果表明,用溶胶-凝胶法制备TiO2/SO2复合光催化粒子,整个反应采用滴加方式;各反应组分用量为n(TEOS+TBOT) :n(EtOH) :n(HCl) :n(H2O)=1 :16 :0.06 :4,n(TBOT) :n(HAc)=1 :0.6;反应温度为室温.制备得到的纳米TiO2/SiO2复合粒子主要以锐钛矿型存在;SiO进入TiO2晶体结构中,两者以化学键相结合;TiO2/SiO2复合粒子的比表面积要比纯TiO2粒子的比表面积大得多,当xTi :xsi=3时,TiO2/SiO2复合粒子比表面积达389.11 m2/g.","authors":[{"authorName":"付文","id":"9667ddfb-46ab-46b1-abd1-ac56a84c6082","originalAuthorName":"付文"},{"authorName":"刘安华","id":"015cf3d3-98a9-4610-aa03-9af7c9b2c428","originalAuthorName":"刘安华"},{"authorName":"张利利","id":"dc723137-df60-40ce-9eb0-637cfb95b193","originalAuthorName":"张利利"}],"doi":"","fpage":"38","id":"f6f816af-8c88-4bce-af4e-664ce0453b61","issue":"3","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"22503c93-cec7-4233-bed7-3267c0c0e36f","keyword":"纳米TiO2/SiO2","originalKeyword":"纳米TiO2/SiO2"},{"id":"9f47a779-b252-4ae2-bf92-7145175f7861","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"34babfc4-fc67-484e-8335-4f45144fc333","keyword":"催化剂","originalKeyword":"催化剂"},{"id":"48e9fdea-be09-4040-a89d-1c781843a5de","keyword":"表征","originalKeyword":"表征"}],"language":"zh","publisherId":"zgcljz200903009","title":"纳米TiO2/SiO2复合催化剂的制备与表征","volume":"28","year":"2009"},{"abstractinfo":"以锐钛矿型TiO2纳米粉体为载体,Na2SiO3为包覆剂,H2SO4为中和剂,采用溶胶-凝胶法制备了系列环境净化功能TiO2/SiO2复合纳米粉体.用XRD、XRF、TEM、BET比表面分析对其进行了表征,并以亚甲基蓝溶液的光催化降解率和COD去除率为指标评价了其光催化活性.结果表明,在TiO2纳米颗粒表面包覆一层多孔非晶态水合二氧化硅纳米膜,可以显著提高其水分散性,有效控制其光催化活性,进而提高了涂料的抗老化性和耐候性.中和时间对包硅效率影响较大,适当增加中和时间有利于提高包硅效率;包覆温度对包硅效率影响较小,升高温度使包硅效率略有降低.低温包覆,成膜相对疏松,改性粉体的光催化活性相对较高;高温包覆,成膜相对致密,改性粉体的光催化活性相对较低.","authors":[{"authorName":"姜洪泉","id":"fc62d1e6-4806-488d-979b-14f2d2e00389","originalAuthorName":"姜洪泉"},{"authorName":"王鹏","id":"d521edc3-f543-44db-b0fa-766b871dc314","originalAuthorName":"王鹏"},{"authorName":"许秋颖","id":"7d3513ca-0fcd-441d-9873-dcad98a2b5a3","originalAuthorName":"许秋颖"},{"authorName":"钟敏","id":"e10413bd-9ba9-449c-b6dd-044436725571","originalAuthorName":"钟敏"},{"authorName":"郑丽娜","id":"19a051aa-f2ad-4516-af74-e0ce275484c4","originalAuthorName":"郑丽娜"},{"authorName":"同亚茹","id":"ec29a646-51f5-4e73-afa0-3b329fc0df8a","originalAuthorName":"同亚茹"}],"doi":"","fpage":"2536","id":"e515a0b4-a9d5-4f32-bb09-90259632b7dc","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"84d35cea-f55b-46fe-afca-c582fb06b03e","keyword":"纳米TiO2/SiO2","originalKeyword":"纳米TiO2/SiO2"},{"id":"06afe028-8b3d-4067-8848-74bcd01395b0","keyword":"包覆","originalKeyword":"包覆"},{"id":"c343a666-9a59-4132-a677-4950dafd7cf1","keyword":"分散性","originalKeyword":"分散性"},{"id":"bf460144-ac5c-4161-b497-1eed1898c9fb","keyword":"光催化氧化","originalKeyword":"光催化氧化"},{"id":"d11ab67e-18cf-4cc8-8e8f-4a3267bbefdc","keyword":"环境净化","originalKeyword":"环境净化"}],"language":"zh","publisherId":"gncl2004z1712","title":"环境净化功能TiO2/SiO2复合纳米粉体的制备与表征","volume":"35","year":"2004"},{"abstractinfo":"用自组装技术合成了纳米TiO2包覆的SiO2粒子.其中TiO2胶体通过溶胶-凝胶方法得到.讨论了不同晶型负载TiO2的合成条件及光催化性.样品经IR,SEM,XRD等进行表征.实验结果表明:SiO2粒子表面的纳米TiO2具有较好的均匀性;TiO2的含量随覆盖层的增加而增多;组装两层样品具有较大的比表面;经100℃干燥可得到不同晶型的纳米TiO2,且锐钛矿型含量较高的纳米TiO2组装粒子具有较好的光催化性能,","authors":[{"authorName":"陈汝芬","id":"422587ec-d2e7-41fb-8ef1-d18b16155484","originalAuthorName":"陈汝芬"},{"authorName":"马薇","id":"7d422210-31d0-437b-8146-6f2e0e2fe04a","originalAuthorName":"马薇"},{"authorName":"宋秀芹","id":"d0a5d184-7870-4046-a2bd-54b686a39c9d","originalAuthorName":"宋秀芹"},{"authorName":"魏雨","id":"f2fcdc7f-c1c0-489e-a91d-ef4bba2346c4","originalAuthorName":"魏雨"}],"doi":"10.3969/j.issn.1007-4252.2006.04.021","fpage":"351","id":"56e78822-7abc-4112-b141-ac2f3e166213","issue":"4","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"e2cd09db-9922-41da-ba89-67e644e4720f","keyword":"纳米结构TiO2/SiO2","originalKeyword":"纳米结构TiO2/SiO2"},{"id":"b52e2710-7ee1-466c-93cd-f891e95da99f","keyword":"逐层自组装","originalKeyword":"逐层自组装"},{"id":"f1b3dfad-a7aa-4439-954a-d0f82f16b060","keyword":"溶胶-凝胶方法","originalKeyword":"溶胶-凝胶方法"},{"id":"db412064-43e4-4b96-8059-ba4cb4378a16","keyword":"光催化","originalKeyword":"光催化"}],"language":"zh","publisherId":"gnclyqjxb200604021","title":"纳米结构TiO2/SiO2的制备、结构与光催化性能","volume":"12","year":"2006"},{"abstractinfo":"以碳纳米管为核心,采用溶胶-回流法制备了纳米CNTs/SiO2/TiO2复合颗粒.用透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶红外光谱(FT-IR)和BET法对其表面形貌、结构和比表面积进行表征.结果表明,所制纳米CNTs/SiO2/TiO2复合颗粒为双层包覆型结构,SiO2为中间层,最外层是锐钛矿型的TiO2;红外光谱分析显示SiO2和TiO2之间形成了Ti-O-Si键;复合颗粒的比表面积是纯碳纳米管的2倍多.","authors":[{"authorName":"孟胜皓","id":"5b3ed55b-85d9-4935-87d4-20c3f7efcdde","originalAuthorName":"孟胜皓"},{"authorName":"闫军","id":"4af289af-9678-40b3-99b8-713f095ae9bd","originalAuthorName":"闫军"},{"authorName":"李洪广","id":"b5af8266-0f22-48ca-b9bd-dba942a37597","originalAuthorName":"李洪广"},{"authorName":"汪明球","id":"eb0989a9-6df6-4996-994f-bbe5c4d57d2c","originalAuthorName":"汪明球"},{"authorName":"杜仕国","id":"3a61acd2-aa9e-4fbe-a9af-b24e5fbf80eb","originalAuthorName":"杜仕国"}],"doi":"","fpage":"3315","id":"cf7cc1e2-5857-4a8d-8434-ae6979d19dce","issue":"11","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"36e6d852-451b-4bb9-84c3-b9a2f332b3cf","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"29e09d69-cb27-40f1-bce3-ca8084924f9a","keyword":"二氧化硅","originalKeyword":"二氧化硅"},{"id":"78c29690-24c6-4801-b6ca-e3441d95447e","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"c4a18da7-9fec-46bc-acb1-5a43177bcb94","keyword":"复合颗粒","originalKeyword":"复合颗粒"}],"language":"zh","publisherId":"rgjtxb98201511072","title":"纳米CNTs/SiO2/TiO2复合颗粒的制备及表征","volume":"44","year":"2015"},{"abstractinfo":"以微乳法制备的SiO2凝胶粒子(100℃干燥)为核,通过溶胶-凝胶工艺包覆纳米TiO2层,并对纳米TiO2包覆SiO2粒子进行相组成和结构表征.实验结果表明:纳米TiO2包覆SiO2所形成的复合粒子的粒径为250 nm左右,其中纳米TiO2包覆壳层较均匀,厚度约为20 nm~40 nm.随煅烧温度的提高(550℃→850℃),包覆纳米TiO2壳层的晶粒尺寸可控制在20 nm以下,且为锐钛矿晶型结构.XPS和FT-IR证实所制备的纳米TiO2壳层与所包覆的SiO2粒子之间形成了Ti-O-Si化学键合.","authors":[{"authorName":"马亚鲁","id":"8b874a1c-7422-44be-9623-819c8b605d8c","originalAuthorName":"马亚鲁"},{"authorName":"朱洪龙","id":"5013e785-acc9-48f1-b248-e70c60627023","originalAuthorName":"朱洪龙"},{"authorName":"王英","id":"0710ad90-7f28-4388-a382-c7192b7cb05d","originalAuthorName":"王英"}],"doi":"","fpage":"174","id":"9b804046-a2ff-4967-9c4c-15628287457c","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"ba61170a-5d7f-42d2-8ef5-d83b7d04a47b","keyword":"纳米TiO2包覆","originalKeyword":"纳米TiO2包覆"},{"id":"64ee670f-233d-4b28-9b82-aaff841bf097","keyword":"SiO2粒子","originalKeyword":"SiO2粒子"},{"id":"958fcde8-5517-4f00-bcf4-24aa80959a58","keyword":"微乳法","originalKeyword":"微乳法"},{"id":"b5b6a6ce-7438-47f0-af15-b67114682119","keyword":"溶胶-凝胶工艺","originalKeyword":"溶胶-凝胶工艺"},{"id":"3c79039f-0d42-4551-8ca1-d09b258ecddc","keyword":"化学键合","originalKeyword":"化学键合"}],"language":"zh","publisherId":"xyjsclygc2005z1050","title":"纳米TiO2包覆SiO2粒子的制备与表征","volume":"34","year":"2005"},{"abstractinfo":"采用聚乙二醇辛基苯基醚(Triton X-100)/正己醇/环己烷/氨水微乳体系合成了纳米TiO2和SiO2/TiO2复合物,用X射线衍射、红外光谱和透射电镜对其结构进行了表征,并以甲基橙降解评价了其光催化性能,讨论了SiO2/TiO2摩尔比、晶相组成及粒径与光催化活性的关系. 结果表明, SiO2/TiO2催化剂中形成了新的 Ti - O - Si 键和无定形SiO2; 在纳米TiO2中复合SiO2能有效抑制锐钛矿向金红石的转变,增加锐钛矿的稳定性,并阻止TiO2晶粒的聚集生长. 催化剂的光催化活性随金红石含量的增加而降低,加入适量SiO2能明显提高TiO2的光催化活性,其中摩尔比为1/7的SiO2/TiO2光催化活性最高.","authors":[{"authorName":"蒲玉英","id":"c267c4a6-aec5-4ff5-9dd9-3abffec98b54","originalAuthorName":"蒲玉英"},{"authorName":"方建章","id":"c3994139-30bd-488d-9cb3-bee3219aa3a3","originalAuthorName":"方建章"},{"authorName":"彭峰","id":"e86ede73-eb74-4412-92a3-d93b0e424762","originalAuthorName":"彭峰"},{"authorName":"李保健","id":"f7aa9a6d-bba8-4ebb-8552-2dd7c4e4bd95","originalAuthorName":"李保健"},{"authorName":"黄垒","id":"97bf29aa-e5de-4892-990c-e166d8cf65dc","originalAuthorName":"黄垒"}],"doi":"","fpage":"251","id":"15b7eb83-332e-4850-b6bf-b5cd17f371fa","issue":"3","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"d54f3ab9-29c1-407a-88cf-5ddf7986f1aa","keyword":"纳米粒子","originalKeyword":"纳米粒子"},{"id":"2852f6ff-0ea0-4b25-a109-71d1c55adfe9","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"e74f986f-82e7-4f44-9349-02be0ff86403","keyword":"氧化硅","originalKeyword":"氧化硅"},{"id":"5c557819-98cd-4479-b451-4431938b2cb4","keyword":"光催化","originalKeyword":"光催化"},{"id":"ede677a3-309f-4ece-b543-25ee4b0add4f","keyword":"微乳法","originalKeyword":"微乳法"},{"id":"d149ec42-3456-42d1-8e9d-91481f428e91","keyword":"甲基橙","originalKeyword":"甲基橙"}],"language":"zh","publisherId":"cuihuaxb200703014","title":"微乳法合成纳米SiO2/TiO2及其光催化性能","volume":"28","year":"2007"},{"abstractinfo":"以Na2SiO3为原料,采用非均匀成核法在纳米TiO2基体上制备了SiO2表面保护膜层,通过红外光谱、X射线光电子能谱、扫描电镜、粒径测量、BET比表面积测量分析,证实纳米TiO2颗粒表面包覆了一层均匀致密的SiO2纳米膜,而且两者是以化学键合方式结合在一起.分散性能测试表明:纳米SiO2/TiO2复合粉体的分散性能明显提高.","authors":[{"authorName":"喻胜飞","id":"608b2925-8576-4188-83de-fcf5e7af0757","originalAuthorName":"喻胜飞"},{"authorName":"罗武生","id":"44d3d53d-328d-497e-8b54-f5ea7f7835c3","originalAuthorName":"罗武生"}],"doi":"","fpage":"59","id":"e61c5897-6ad4-40b7-bded-9af25f274ce9","issue":"7","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"aa336e2a-cd09-47f7-bc6c-72fae15b1781","keyword":"纳米TiO2","originalKeyword":"纳米TiO2"},{"id":"c6f0e283-0dd4-474c-8b74-e013375f95d5","keyword":"包覆","originalKeyword":"包覆"},{"id":"49372dc0-1ebb-4d2a-b3c2-4e1fa0e13e8c","keyword":"纳米SiO2","originalKeyword":"纳米SiO2"},{"id":"62ce4a10-103b-4ba5-af1d-19f65aec5706","keyword":"复合粉体","originalKeyword":"复合粉体"},{"id":"7befd1e2-16c9-4312-91ee-493e23925204","keyword":"非均匀成核","originalKeyword":"非均匀成核"}],"language":"zh","publisherId":"tlgy201307014","title":"纳米SiO2/TiO2复合粉体的制备及表征","volume":"43","year":"2013"},{"abstractinfo":"用静电纺丝技术成功制备出复合中空TiO2/SiO2纳米纤维.用动态热分析仪、红外光谱仪、X射线衍射仪、扫描电镜、透射电镜和X射线能谱仪等分析技术对样品进行了表征.分析结果表明,得到的产物为复合中空TiO2/SiO2纳米纤维,以非晶SiO2为外壳,内壁由粒径为50 am的晶态TiO2粒子组成,复合中空纳米纤维平均直径2 μm,长度>100μm.讨论了复合中空纳米纤维的形成机制,复合纤维在烧结过程中,芯层TiO2纳米粒子向外表面扩散,与壳层SiO2粒子形成新化学键,得到复合中空纳米纤维.","authors":[{"authorName":"张双虎","id":"f0ef52db-c6e6-44e6-886f-a64af2a0ae88","originalAuthorName":"张双虎"},{"authorName":"董相廷","id":"2b1c0bde-8fb0-4422-b7e3-1cb7405ced9f","originalAuthorName":"董相廷"},{"authorName":"徐淑芝","id":"54a1e682-8bfa-46ee-b235-437f3abd9d76","originalAuthorName":"徐淑芝"},{"authorName":"王进贤","id":"1e411443-38d1-412d-9e1e-c3a0e372fe35","originalAuthorName":"王进贤"}],"doi":"10.3321/j.issn:1000-3851.2008.03.024","fpage":"138","id":"c31522c3-57cd-47ff-a189-4bfb85bcf5ff","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"73702772-518e-4ec6-841d-dc9fad8216dd","keyword":"静电纺丝","originalKeyword":"静电纺丝"},{"id":"3222e0f0-c11c-4dc1-a2a2-903ca16f4f10","keyword":"复合中空纳米纤维","originalKeyword":"复合中空纳米纤维"},{"id":"14d89e1d-c24e-4d68-a0ff-cc513fe5dc8a","keyword":"TiO2/SiO2","originalKeyword":"TiO2/SiO2"}],"language":"zh","publisherId":"fhclxb200803024","title":"静电纺丝技术制备TiO2/SiO2复合中空纳米纤维与表征","volume":"25","year":"2008"},{"abstractinfo":"采用溶胶-凝胶法制备了TiO2/SiO2和不同浓度Fe3+掺杂的Fe3+/TiO2/SiO2复合纳米粉末,并利用XRD、BET、UV-vis等手段研究了TiO2/SiO2及掺铁形成的Fe3+/TiO2/SiO2复合微粒的表面结构形态变化,以及对污染物NO-2光催化降解的影响. 结果表明,Fe3+/TiO2/SiO2(ω(Fe3+)=1.5%,m(Ti)∶m(Si)=2∶1)具有最佳活性,样品呈晶化度较低的锐钛矿结构. Fe3+掺杂导致晶粒的增大,稳定性降低,大大提高了半导体的光催化活性,有利于对低浓度NO-2的光催化降解.","authors":[{"authorName":"金华峰","id":"1bf87efe-3569-4bd0-b51e-23637b64a7c7","originalAuthorName":"金华峰"},{"authorName":"李文戈","id":"d4a571bf-b9b1-4521-a2dc-c5e920c861bf","originalAuthorName":"李文戈"},{"authorName":"向纪明","id":"c3613ea3-1f55-4e1b-a817-fb04080b4e2b","originalAuthorName":"向纪明"},{"authorName":"唐吉玉","id":"e136884c-58c5-4316-b798-197e4b8268ac","originalAuthorName":"唐吉玉"}],"doi":"10.3969/j.issn.1000-0518.2001.08.011","fpage":"636","id":"a9e6ad06-1461-4432-9d6f-5a3387526cbd","issue":"8","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"77b9cbf2-047e-4697-927a-5145e28c8379","keyword":"Fe3+/TiO2/SiO2","originalKeyword":"Fe3+/TiO2/SiO2"},{"id":"a04b2a9f-e966-4d12-85af-26be4291d379","keyword":"TiO2/SiO2","originalKeyword":"TiO2/SiO2"},{"id":"6071c626-dfb2-48b7-90ee-500a6dba63fa","keyword":"复合微粒","originalKeyword":"复合微粒"},{"id":"61960607-64bb-4377-8e52-4987cc5ec3d7","keyword":"光降解","originalKeyword":"光降解"},{"id":"ec1dba0d-3754-400a-823b-10439d4f5c8c","keyword":"NO-2","originalKeyword":"NO-2"}],"language":"zh","publisherId":"yyhx200108011","title":"Fe3+/TiO2/SiO2复合纳米微粒的合成及光催化降解NO-2","volume":"18","year":"2001"},{"abstractinfo":"采用TiCl4作为前驱体,对TiO2溶胶进行SiO2复合改性,制备出无需热处理就具有良好性能的TiO2溶胶,用浸渍提拉法在玻璃上镀膜,获得TiO2/SiO2涂层.采用XPS、XRD、SEM、AFM等对溶胶和薄膜进行表征和分析.研究结果表明:最优SiO2复合量为0.3(与TiO2的摩尔比).溶胶中含有结晶良好的锐钛矿TiO2,改性后的TiO2颗粒粒径减小.复合溶胶中,Si元素主要以SiO2和Ti-O-Si键两种形式存在.薄膜表面由TiO2的二次粒子堆积而成,呈不规则球形,三维形貌为一些尖塔状突起,复合薄膜表面颗粒更为细小,成膜更为致密.复合溶胶和薄膜具有更优异的紫外和可见光的亚甲基蓝降解能力,最终水接触角可达到0°,显示出更优越的亲水性能,对油酸的分解能力明显提高,具有更强的自清洁性能.","authors":[{"authorName":"樊新民","id":"bc2908ae-0382-46df-b4e7-ba56dfb7288d","originalAuthorName":"樊新民"},{"authorName":"洪洋","id":"b1004e68-ddd4-4b48-9a76-6a86dd44f65a","originalAuthorName":"洪洋"}],"doi":"","fpage":"1819","id":"ba8e03f7-abbe-4b78-ab5c-548c70b0501a","issue":"9","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"0c75656c-7c18-4e8f-9b80-8718bbf8d9e5","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"c5dc1040-2446-430d-a23d-0a8410186a0a","keyword":"TiO2/SiO2复合薄膜","originalKeyword":"TiO2/SiO2复合薄膜"},{"id":"26eb0691-c87d-4475-a57d-4c4cfb8b0ffa","keyword":"光催化性","originalKeyword":"光催化性"},{"id":"38e8a758-9c02-4344-adc8-8ebb7fdbdd1b","keyword":"亲水性","originalKeyword":"亲水性"},{"id":"69f537b8-ddb5-4851-ac18-d3af35c4a519","keyword":"自清洁性","originalKeyword":"自清洁性"}],"language":"zh","publisherId":"rgjtxb98201309018","title":"自清洁纳米TiO2/SiO2复合薄膜的制备与性能","volume":"42","year":"2013"}],"totalpage":9224,"totalrecord":92232}