研究了TWIP钢Fe-23Mn-2A1-0.2C固溶处理后的组织演变和拉伸变形行为,并对其变形机制进行了探讨。结果表明:随固溶温度升高,实验钢的晶粒尺寸逐渐增大,屈服强度和抗拉强度均降低,伸长率增大,强塑积先增大后减小,在900oC时达到最高;实验钢的拉伸变形呈现连续屈服,同时随固溶温度升高,加工硬化速率(dtr/d6)与真应变(8)的变化关系由2阶段变为3阶段。通过OM和TEM观察显示,随着晶粒尺寸的增加,变形过程中形变孪晶数量增多,孪晶诱导塑性(TWIP)效应增大。
Tensile deformation behavior and microstructural evolution of Fe-23Mn-2A1-0.2C TWIP steel after solution treatment were studied and the deformation mechanism was discussed. The results show that as increase of the solution temperature, grain size of the steel gradually increases, its yield strength and tensile strength decrease, while plasticity increases. The product of strength and plasticity first increases and then decreases with the temperature increase from 700℃ to 1100 ℃ , and reaches the peak value at 900 ℃. Deformation behavior with three stages was observed for the steel solutiontreated at high solution temperatures. While at low temperature, there exist only two stages in the deformation behavior for the dependence of strain hardening rate on true strain. With increasing the grain size, more deformation twins are observed in the deformed steel and the effect of twininz induced plasticity (TWIP) increases.
参考文献
[1] | Georg FROMMEYER;Udo BRUX;Peter NEUMANN .Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes[J].ISIJ International,2003(3):438-446. |
[2] | Grassel O.;Frommeyer G.;Meyer LW.;Kruger L. .High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development - properties - application[J].International Journal of Plasticity,2000(10/11):1391-1409. |
[3] | Vercammen S;Blanpain B;DeCooman B C .Cold rolling behavior of an austenitic Fe-30Mn-3Si-3Al TWIP steel:the importance of deformation twinning[J].Acta Materialia,2004,52(07):2005-2012. |
[4] | Bouaziz O;Guelton N .Modelling of TWIP effect on work-hardening[J].Materials Science and Engineering A,2001,319-321(12):246-249. |
[5] | Shiekhelsouk, MN;Favier, V;Inal, K;Cherkaoui, M .Modelling the behaviour of polycrystalline austenitic steel with twinning-induced plasticity effect[J].International Journal of Plasticity,2009(1):105-133. |
[6] | Christian J W;Mahajan S .Deformation twinning[J].Progress in Materials Science,1995,39(1-2):1-157. |
[7] | R. Ueji;N. Tsuchida;D. Terada .Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure[J].Scripta materialia,2008(9):963-966. |
[8] | El-Danaf E.;Doherty RD.;Kalidindi SR. .Influence of deformation path on the strain hardening behavior and microstructure evolution in low SFE FCC metals[J].International Journal of Plasticity,2001(9):1245-1265. |
[9] | 王书晗,刘振宇,王国栋.TWIP钢中晶粒尺寸对TWIP效应的影响[J].金属学报,2009(09):1083-1090. |
[10] | Zhenli Mi,Di Tang,LING Yan,Jin GUO.High-Strength and High-Plasticity TWIP Steel for Modern Vehicle[J].材料科学技术学报(英文版),2005(04):451-454. |
[11] | Barbier, D;Gey, N;Allain, S;Bozzolo, N;Humbert, M .Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2009(1/2):196-206. |
[12] | Yang P;Xie Q;Meng L;Ding H;Tang Z .Dependence of deformation twinning on grain orientation in a high manganese steel[J].Scripta materialia,2006(7):629-631. |
[13] | 鲁法云,杨平,孟利,毛卫民.18Mn TRIP钢温变形过程中马氏体逆相变行为[J].金属学报,2010(10):1153-1160. |
[14] | E.E.Danaf;S.R.Kalidindi .Influence of grain size and stacking-fault energy on deformation twinning in Fcc metals[J].Metallurgical and materials transactions. A, physical metallurgy and materials science,1999(5):1223-1233. |
[15] | Kalidindi SR. .Modeling the strain hardening response of low SFE FCC alloys[J].International Journal of Plasticity,1998(12):1265-1277. |
[16] | 黎倩,熊荣刚,陈佳荣,符仁钰,李麟.TWIP钢的显微组织与变形机制研究[J].材料热处理学报,2008(02):52-55. |
[17] | Javier Gil Sevillano .Geometrically necessary twins and their associated size effects[J].Scripta materialia,2008(2):135-138. |
[18] | M. A. MEYERS;O. VOHRINGER;V. A. LUBARDA .THE ONSET OF TWINNING IN METALS: A CONSTITUTIVE DESCRIPTION[J].Acta materialia,2001(19):4025-4039. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%