欢迎登录材料期刊网

材料期刊网

高级检索

随着液化天然气(LNG)储罐朝着大型化发展,在不增加容器壁厚的情况下,必须提高钢板强度。在传统9Ni钢中添加Cu,通过析出强化,使其强度水平得到显著提高。提出一种新型含1.25%Cu(质量分数)9Ni钢。试验钢经过控轧直接淬火(DQ);研究了DO材料分别经过1)QLT(奥氏体(γ)单相区淬火(Q)+两相区(α+γ)淬火(L)+回火(T))和2)DQ-LT(直接两相区淬火+回火)热处理时的显微组织和性能;考察了QLT处理试验钢在单道和双道次焊接条件下粗晶热影响区(CGHAZ)的性能和断VI形貌。采用光镜(0M)、扫描电镜(SEM)、透射电镜(TEM)和XRD鉴定了材料的组织特征。测试了室温拉伸性能和深冷条件下(一196℃)夏比冲击吸收能量(AKv)。试验钢经QLT(tL=一635℃)处理,奥氏体体积分数为13.5%,屈服强度RP02一718MPa,总延伸率23%,一196℃下AKv为130J;CGHAZ在一196℃时的Akv达到66J。

The increase in the size of LNG-tanks leads to mandatory requirement of strengthening of 9Ni steel plates which enables the thickness of the wall without being increased. The strength of the 9Ni steel is markedly increased by the Cu addition due to precipitation of finely dispersed Cu particles. A 9Ni steel with 1.25 pct (mass fraction) copper addition was proposed. The experimental steel plates were processed by controlled-rolling and directquench- ing (DQ). The DQ treated plates were further heat treated, respectively, by 1) QLT, i. e. , quenching from austenire (7) single phase (Q) followed by reheating and quenching from two phase (α+γ) region (L) and tempering (T), and 2) DQ-LT, i. e. , quenching from α+γ region and tempering after the controlled rolling. The thermal conditions of the CGHAZ in the QLT treated samples were simulated. The mechanical properties of the CGHAZ and fractographs were examined. The microstructures were analyzed employing optical microscope (OM), scanning e lectronic microscope (SEM) and transmission electronic microscope (TEM). The volume fraction of austenite was detected by XRD technique. Tensile properties were tested at room temperature while the Charpy V notch impact energy (AKv) was measured at a cryogenic condition of --196 ℃. The volume fraction of austenite in the QLT (tL = 635 ℃) treated steel was 13.5%. The yield strength (Rp0.2 ) reached 718MPa, the AKV was 130J. Sufficient cryogenic toughness (AKv at 66J) was achieved in the CGHAZ by double-pass welding operations.

参考文献

[1] ZHANG Yaoguang,ZHAO Yonghong,CHANG Hongwei,WANG Dan,MENG Zhaobin.Distribution and Chain Pattern of Liquefied Natural Gas Industry in China[J].中国地理科学(英文版),2007(03):203-209.
[2] 刘东风,杨秀利,侯利锋,崔天燮,胡玉亭,卫英慧.液化天然气储罐用超低温9Ni钢的研究及应用[J].钢铁研究学报,2009(09):1-5.
[3] Saitoh N;Yamaba R;Muraoka H et al.Development of Heavy 9% Nickel Steel Plates with Superior Low Tempera-ture Toughness for LNG Tanks[J].NIPPON STEEL TECHNICAL REPORT,1993,58(07):9.
[4] 张弗天;王景韫;郭蕴宜 .Ni9钢中的回转奥氏体与低温韧性[J].金属学报,1984,20:405.
[5] 杨跃辉,蔡庆伍,武会宾,王华.两相区热处理过程中回转奥氏体的形成规律及其对9Ni钢低温韧性的影响[J].金属学报,2009(03):270-274.
[6] Jang JI.;Ju JB.;Lee BW.;Kwon D.;Kim WS. .Effects of microstructural change on fracture characteristics in coarse-grained heat-affected zones of QLT-processed 9% Ni steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):68-79.
[7] Hoshino M;Saitoh N;Muraoka H et al.Development of Su-per-9% Ni Steel Plates with Superior Low-Temperature Toughness for LNG Storage Tanks[J].NIPPON STEEL TECHNICAL REPORT,2004,90:17.
[8] Jang J-I;Lee B W;Jang B J et al.Crack-Initiation Toughnessand Crack-Arrest Toughness in Advanced 9 Pct Ni Steel Welds Containing Local Brittle Zones[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2002,33A:2615.
[9] Nakada N;Syarif J;Tsuchiyama T et al.Improvement of Strength-Ductility Balance by Copper Addition in 9G Ni Steels[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2004,A374:137.
[10] 余伟,唐获,武会宾.中厚板组织性能控制技术的发展和应用状况[J].钢铁研究学报,2010(08):1-7.
[11] 朱伏先,肖桂枝,陈炳张,王国栋.直接淬火技术在中厚钢板生产中的工业应用[J].钢铁研究学报,2010(07):1-5.
[12] 王国栋.TMCP技术的新进展-柔性化在线热处理技术与装备[J].轧钢,2010(02):1-6.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%