欢迎登录材料期刊网

材料期刊网

高级检索

The thermophysical properties of expanded liquid mercury have been investigated along the liquid-vapor coexis tence curve by using Monte Carlo and Molecular Dynamic simulations. For the purpose, an empirical state dependent interatomic potential for the region of dense metallic liquid is used, while the state dependence is not necessary near the critical point. In order to test the validity of this potential, we determine the surface layering and the sound velocity, two properties very sensitive to the choice of the potential. Our results are in quite good agreement with other theoretical results and to the experimental data available in the literature.

参考文献

[1] Kresse G.;Hafner J. .AB INITIO SIMULATION OF THE METAL/NONMETAL TRANSITION IN EXPANDED FLUID MERCURY[J].Physical Review.B.Condensed Matter,1997(12):7539-7548.
[2] Schonherr G;Schmutzler R W;Hensel F .[J].PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANIC,1979,40:411.
[3] Levin M;Schmutzler R W .[J].Journal of NON-CRYSTALLINE SOLIDS,1984,61-62:83.
[4] Nagel S;Redmer R;Ropke G .[J].Journal of Non-Crystalline Solids,1996,205-207:247.
[5] Hensel F .[J].Advances in Physics,1995,44:3.
[6] [J].Journal of Non-Crystalline Solids,2002,312-314(01)
[7] Hensel F;Warren W W.Fluid Metals:The Liquid-Vapor Transition of Metals[M].Princeton:The Princeton University Press,1999
[8] Kozhevnikov V;Arnold D;Grodzinskii E;Naurzakov S .[J].Journal of Non-Crystalline Solids,1996,205-207:256.
[9] Kohno H;Yao M .[J].Journal of Physics:Condensed Matter,1999,11:5399.
[10] Tamura K.;Hosokawa S. .Structural studies of expanded fluid mercury up to the liquid-vapor critical region[J].Physical Review.B.Condensed Matter,1998(14):9030-9038.
[11] Hong X;Inni M;Matsusaka T;Ishikawa D , Kazi M H , and Tamura T .[J].Journal of Non-Crystalline Solids,2002,312-314:284.
[12] Okumura H.;Yonezawa F. .Bulk viscosity in a density-dependent-potential system[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2002(0):260-264.
[13] Raabe G;Todd BD;Sadus RJ .Molecular simulation of the shear viscosity and the self-diffusion coefficient of mercury along the vapor-liquid coexistence curve - art. no. 034511[J].The Journal of Chemical Physics,2005(3):34511-0.
[14] Chekmarev DS.;Rice SA.;Zhao MS. .Computer simulation study of the structure of the liquid-vapor interface of mercury at 20, 100, and 200 degrees C[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,1999(1 Pt.a):479-491.
[15] Chacon E;Reinaldo-Falagan M;Velasco E;Tarazona P .[J].Physical Review Letters,2001,87:166101.
[16] Sumi T.;Tanaka K.;Miyoshi E. .Molecular-dynamics study of liquid mercury in the density region between metal and nonmetal[J].Physical Review.B.Condensed Matter,1999(9):6153-6158.
[17] Munro L J;Johnson J K;Jordan K D .[J].Journal of Chemical Physics,2001,114:5545.
[18] Munejiri S.;Hoshino K.;Shimojo F. .The density dependence of the velocity of sound in expanded liquid mercury studied by means of a large-scale molecular-dynamics simulation[J].Journal of Physics. Condensed Matter,1998(23):4963-4974.
[19] Toth G .[J].Journal of Chemical Physics,2003,118:3949.
[20] Bomont J M;Bretonnet J L .[J].Journal of Chemical Physics,2006,124:54504.
[21] Ishikawa D;Inui M;Matsuda K;Tamura K , Tsutsui S , and Baron A Q R .[J].Physical Review Letters,2004,93:97801.
[22] Allen M P;Tildesley D J.Computer Simulation of Liquids[M].Oxford:Oxford University Press,1987
[23] Iwamatsu M;Lai S K .[J].Journal of Physics:Condensed Matter,1992,4:6039.
[24] Mo H;Guennenko G;Kewalramani S;Kim K , Ehrlich S N , and Dutta P .[J].Physical Review Letters,2006,96:96107.
[25] Magnussen P M;Ocko B M;Regan M J;Penanen K , Pershan P S , and Deutsch M .[J].Physical Review Letters,1995,74:4444.
[26] Chacon E;Tarazona P .[J].Physical Review Letters,2003,91:166103.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%