采用方波脉冲电流电沉积了含有CeO2、SiO2纳米颗粒掺杂的Ni-W-P合金镀层.在脉冲峰值电流密度恒定(30A/dm2)下,研究了脉冲导通时间和脉冲关断时间对纳米复合镀层特性的影响,采用化学组成、显微硬度和微观组织进行表征.结果表明:通过Ni、W、P和CeO2、SiO2纳米颗粒的脉冲共沉积,在普通碳钢表面制备了具有细晶结构的Ni-W-P-CeO2-SiO2纳米复合镀层.当脉冲导通时间和脉冲关断时间均控制在100μs时.纳米复合镀层显策硬度最高,为6890 MPa.当脉冲关断时间控制在1000 μs时,纳米复合镀层晶粒尺寸随脉冲导通时间(100~400 μs)的增加而降低,但若脉冲导通时间(400~1000 μs)继续增加,晶粒尺寸又开始增大.当脉冲导通时间控制在100 μs时,增加脉冲关断时间(100~4000 μs),纳米复合镀层晶粒尺寸增大.
Square-wave pulse current was used to electrodeposit Ni-W-P alloy coating containing nano-CeO2 and nano-SiO2 particles.At constant pulse peak current density (30 A/din2),the influence of pulse on-times and pulse off-times on the characteristics was researched,the characteristics were assessed by chemical compositions,microhardness and microstructures.The results showed that pulse co-deposition of Ni,W,P,nano-CeO2 and nano-SiO2 particles led to Ni-W-P-CeO2-SiO2 nano-composite coatings in fine-grained structure on common carbon steel.When the pulse on-time and pulse off-time were both controlled at 100 μs,the highest microhardness of 6890 MPa was obtained.At constant pulse off-time (1000 μs),the crystal size of the nano-composite coating decreased with increasing the pulse on-time of 1000~400 μs before it started to increase with further increasing the pulse on-time of 400~1000 μs.At constant pulse on-time (100 μs),increasing the pulse off-time of 100~4000 μs resulted in a progressive increase of the crystal size of the nano-composite coatings.
参考文献
[1] | Kollia N;Spyrellis N .[J].Surface and Coatings Technology,1993,57(01):71. |
[2] | Kollia C;SpyreUis N .[J].Surface and Coatings Technology,1993,57(01):71. |
[3] | Richoux V;Diliberto S;Boulanger C et al.[J].Electrochimica Acta,2007,52(09):3053. |
[4] | Dong J K;Yu M R;Moo H S et al.[J].Surface and Coatings Technology,2005,192(01):88. |
[5] | El-Sherik A M;Erb U .[J].Plating and Surface Finishing,1995,82(09):85. |
[6] | Xiangming He;Weihua Pu;Jianguo Ren;Li Wang;Jiulin Wang;Changyin Jiang;Chunrong Wan .Charge/discharge characteristics of sulfur composite cathode materials in rechargeable lithium batteries[J].Electrochimica Acta,2007(25):7362-7371. |
[7] | Zimmerman A F;Clark D G;Aust K T et al.[J].Materials Letters,2002,52(01):85. |
[8] | Mishra R;Balasubramaniam R .[J].Corrosion Sciences,2004,46(12):3019. |
[9] | Wonbaek K;Rolf W .[J].Surface and Coatings Technology,1989,38(03):289. |
[10] | Xu Ruidong;Wang Jnnli;He Lifang et al.[J].Surface and Coatings Technology,2008,202(08):1574. |
[11] | KARTHIKEYAN S,SRINIVASAN K N,VASUDEVAN T,JOHN S.化学镀Ni-P-Cr2O3和Ni-P-SiO2复合镀层的研究[J].电镀与涂饰,2007(01):1-6. |
[12] | Cao Tiehua;Cheng Danhong;Sang Fuming et al.[J].Plating and Surface Finishing,2004,24(06):27. |
[13] | Hellmuth F .[J].Electrodeposition and Surface Treatment,1973,1:319. |
[14] | Puippe J C;Ibl N .[J].Plating and Surface Finishing,1980,68:67. |
[15] | Abdulin V S;Chernenko V I .[J].Protection of Metals,1982,18(06):777. |
[16] | Yoshimura S;Chida S;Sato E et al.[J].Metal Finishing,1986,84(01):39. |
[17] | Kollia C;Spyrellis N;Amblard J et al.[J].Journal of Applied Electrochemistry,1990,20(06):1025. |
[18] | El-Sherik A M;Erb U;Page J .[J].Surface and Coatings Technology,1996,88(01):70. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%