欢迎登录材料期刊网

材料期刊网

高级检索

目的:将超声波、磁场引入到微电铸过程中,改善电沉积镍晶微构件的表面性能。方法改变电流密度、脉冲占空比、超声波功率、磁场强度的方向和强度,进行电沉积镍晶微铸件,分析这些工艺参数对微铸件表面形貌和显微硬度的影响。结果微铸件的显微硬度随磁场强度的增大而显著提高,随着阴极电流密度、超声波功率及脉冲占空比的增大呈现出先升高、后下降的规律,其中脉冲占空比对电铸层显微硬度的影响较弱。优选的工艺参数为:垂直磁场强度0.8 T,阴极电流密度2 A/ dm2,超声波功率240 W,脉冲占空比20%。结论引入超声波和磁场后可优化电沉积环境,细化电铸层晶粒尺寸,改善电铸层微观形貌,提高微铸件显微硬度。

Objective In order to improve the surface properties of electro-deposited nickel micro-electroforming parts, ultrason-ic and magnetic fields were introduced into the micro electroforming process. Methods Current intensity, pulse duty cycle, ultra-sonic power, direction and intensity of magnetic field strength were altered during the electro-deposition of nickel micro-electrofor-ming parts, and the effects of the above parameters on the performance of the surface morphology and microhardness of the micro-electroforming parts were analyzed. Results The micro-hardness of the micro-casting part increased significantly along with the in-crease of the magnetic field intensity, while first increased and then decreased along with the increasing current intensity, pulse du-ty cycle and ultrasonic power, among which the pulse duty cycle had weaker effect on the micro-hardness as compared to the other parameters. The optimized parameters were: vertical magnetic field intensity 0. 8 T, cathode current density 2 A/ dm2 , ultrasonic power 240 W, and pulse duty cycle 20% . Conclusion Electrodeposition environment could be optimized after introducing ultra-sound and magnetic fields so as to refine the grain size, improve the electroformed layer morphology and enhance the microhardness of the microcasting parts.

参考文献

[1] 明平美,朱荻,胡洋洋,曾永彬.超声微细电铸试验研究[J].中国机械工程,2008(06):644-647.
[2] 刘娜娜,吴蒙华,李智,王元刚.磁场作用下电沉积镀层技术的研究进展[J].稀有金属材料与工程,2013(03):649-654.
[3] NIU Lian-ping;YE Dan-dan;LI Feng et al.Electrodeposi-tion of Ni Micro/Nano-structures[J].Chinese Science Bul-letin,2011,32(56):3426-3430.
[4] 雷卫宁,朱荻,李冬林,刘浏,李仁兴.高性能微细电铸的实验研究[J].材料工程,2008(10):25-28.
[5] R. G. Delatorre;R. C. da Silva;J. S. Cruz;N. Garcia;A. A. Pasa .Electrodeposited magnetite with large magnetoresistive response at room temperature and low magnetic fields[J].Journal of solid state electrochemistry,2009(6):843-847.
[6] Matsushima H;Ispas A;Bund A;Bozzini B .Magnetic field effects on the initial stages of electrodeposition processes[J].Journal of Electroanalytical Chemistry: An International Journal Devoted to All Aspects of Electrode Kinetics, Interfacial Structure, Properties of Electrolytes, Colloid and Biological Electrochemistry,2008(2):191-196.
[7] Tschulik, K;Koza, JA;Uhlemann, M;Gebert, A;Schultz, L .Effects of well-defined magnetic field gradients on the electrodeposition of copper and bismuth[J].Electrochemistry communications,2009(11):2241-2244.
[8] 朱保国,王振龙.电铸技术的发展及应用[J].电加工与模具,2006(05):1-6.
[9] Mishra, AC;Thakur, AK;Srinivas, V .Effect of deposition parameters on microstructure of electrodeposited nickel thin films[J].Journal of Materials Science,2009(13):3520-3527.
[10] 康进兴,赵文轸,徐英鸽,孙立明.工艺参数对电沉积纳米晶镍沉积速率的影响[J].材料热处理学报,2008(03):152-155.
[11] 陈汉宾,周静,吴护林,陈晓琴,陈东,李忠盛,李立.占空比对高频脉冲电沉积(Ni-Co)/纳米Al2O3复合镀层的影响[J].表面技术,2013(04):56-58,82.
[12] 张文峰.利用脉冲电铸技术制备含纳米颗粒的梯度功能材料[J].表面技术,2008(05):55-57.
[13] Myong Jin Kim;Joung Soo Kim;Dong Jin Kim .Electro-Deposition of Oxide-Dispersed Nickel Composites and the Behavior of Their Mechanical Properties[J].Metals and Materials International,2009(5):789-795.
[14] 李济顺,薛玉君,兰明明,刘义,余永健.超声波对Ni-CeO2纳米复合电铸层微观结构和性能的影响[J].中国有色金属学报,2009(03):517-522.
[15] 谢兰清,王彩霞.辅助超声振荡电沉积Cu-SiC复合镀层的结构与性能[J].兵器材料科学与工程,2013(02):72-76.
[16] 赵林,樊占国,杨中东,高鹏,秦高梧.磁场下电沉积制备CuCo颗粒膜的巨磁电阻效应[J].中国有色金属学报,2009(05):924-929.
[17] 高鹏,杨中东,薛向欣,樊占国.磁场影响下的电沉积[J].材料保护,2006(08):38-42.
[18] 屠振密,胡会利,于元春,高鹏.电沉积纳米晶材料制备方法及机理[J].电镀与环保,2006(04):4-8.
[19] 杨建明,朱荻,雷卫宁.电沉积法制备纳米晶材料的研究进展[J].材料保护,2003(04):1-4.
[20] 冯秋元 .Ni-Al<,2>O<,3>纳米复合镀层制备及性能研究[D].大连理工大学,2008.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%