欢迎登录材料期刊网

材料期刊网

高级检索

各种定向凝固方法中Micro-pulling-down(μ-PD)法发展很快,生长出的纤维的晶体组织、物理性能和光学性能较好.介绍了μ-PD法的特点、基本原理、溶质分凝特性、凝固组织及其制备的纤维晶体性能,针对μ-PD法在金属熔体生长时弯月面不稳定而使晶体表面出现不光滑的问题,提出了采用恒定磁场调节使弯月面稳定的改进措施.

参考文献

[1] 傅恒志.先进材料定向凝固[M].北京:科学出版社,2008:4.
[2] LaBelle Jr H E .Growth of controlled profile crystals from the melt:Part -ⅡEdge-defined,film-fed growth (EFG)[J].Materials Research Bulletin,1971,6:581.
[3] Fukuda T.Fiber vrystal hrowth from the melt[M].India:Springer Press,2003
[4] Shivani Singh et al.Crystalline fiber growth of dye-doped L-arginine phosphate by the laser-heated pedestal growth technique[J].Crystal Growth,2008,310:2039.
[5] Yoon Dae-Ho et al.Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method[J].Crystal Growth,1994,142:339.
[6] Erdei S.;Tanaka I.;Hesselink L.;Cross LE.;Feigelson RS. Ainger FW.;Kojima H.;Galambos L. .INHOMOGENEITIES AND SEGREGATION BEHAVIOR IN STRONTIUM-BARIUM NIOBATE FIBERS GROWN BY LASER-HEATED PEDESTAL GROWTH TECHNIQUE .2.[J].Journal of Crystal Growth,1996(3/4):670-680.
[7] http://www,sciencedirect,com/[OL].http://www.sciencedirect,com/
[8] Yoon Dae-Ho et al.Characterization of LiNbO3 micro single crystals grown by the micro-pulling-down method[J].Crystal Growth,1994,144:201.
[9] Fukuda T.Chani V L Shaped crystalsl[M].Berlin Heidelberg:Springer-Verlag,2007
[10] Anis Jouini;Akira Yoshikawa;Yannick Guyot;Alain Brenier;Tsuguo Fukuda;Georges Boulon .Potential candidate for new tunable solid-state laser between 1 and 2μm: Ni~(2+)-doped MgAl_2O_4 spinel grown by the micro-pulling-down method[J].Optical materials,2007(1):47-49.
[11] Alshourbagy M et al.Optical and scintillation properties of Ce3+ doped YA103 crystal fibers grown by μ-pulling down technique[J].Journal of Crystal Growth,2007,303:500.
[12] Santo A M E et al.Growth of LiYF4 single-crystalline fibres by micro-pulling-down technique[J].Crystal Growth,2005,275:528.
[13] Mariya Z et al.The micro-pulling-down growth of Bi4Si3O12(BSO) and Bi4Ge3O13 (BGO) fiber crystals and their scintillation efficiency[J].Crystal Growth,2008,310:2152.
[14] Ganschow S et al.Growth conditions and composition of terbium aluminum garnet single crystals grown by the micro pulling down technique[J].Crystal Growth,2001,225:454.
[15] Schafer N.;Shimamura K.;Koh HJ.;Fukuda T.;Yamada T. .GROWTH OF SIXGE1-X CRYSTALS BY THE MICRO-PULLING-DOWN METHOD[J].Journal of Crystal Growth,1996(1/4):675-679.
[16] Feigelson R S .Pulling optical fibers[J].Crystal Growth,1986,79:669.
[17] Tatarchenko V A .Capillary shaping in crystal growth from melts:Ⅰ.Theory[J].Crystal Growth,1977,37:272.
[18] Surek T;Chalrners B .The direction of growth of the surface of a crystal in contact with its melt[J].Journal of Crystal Growth,1975,29:1.
[19] Satoshi Uda et al.Analysis of Ge distribution in Si1-x Gex single crystal fibers by the micro-pulling down method[J].Crystal Growth,1996,167:64.
[20] Pawlak Dorota A et al.Self-organized,rodlike,micrometerscale microstructure of Tb3 Sc2Al3O12-TbScO3:Pr eutectic[J].Chemistry of Materials,2006,18:2450.
[21] Pawlak DA;Kolodziejak K;Rozniatowski K;Diduszko R;Kaczkan M;Malinowski M;Piersa M;Kisielewski J;Lukasiewicz T .PrAlO3-PrAl11O18 eutectic: Its microstructure and spectroscopic properties[J].Crystal growth & design,2008(4):1243-1249.
[22] Lee J H et al.Growth and characterization of Al2O3/YAG/ZrO2 ternary eutectic fibers[J].Crystal Growth,2001,231:115.
[23] Pena J I et al.Processing,microstructure and mechanical properties of direetionally-solidified Al2O3-Y3Al5O12-ZrO2 ternary euteeties[J].Journal of the European Ceramic Society,2006,26:3113.
[24] Epelbaum BM.;Hofmann D. .Facet formation during fiber pulling from the melt[J].Journal of Crystal Growth,2002(Pt.3):2098-2103.
[25] Davorin Lovric;Zlatko Vucic;Jadranko Gladic .Model study of local enhancement of chemical potential gradient after facet formation on growing spherical Cu_(2-δ)Se crystals[J].Journal of Crystal Growth,2007(2):497-503.
[26] 李友荣,余长军,吴双应,彭岚.轴向磁场对硅单晶Czochralski生长过程的影响[J].材料研究学报,2005(03):249-254.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%