欢迎登录材料期刊网

材料期刊网

高级检索

通过XRD、TEM、EBSD以及拉伸试验研究硅元素对超细晶黄铜力学性能和退火行为的影响.将Cu-20Zn和Cu-20Zn-1.2Si合金在液氮温度(约-196℃)下进行轧制并进行退火处理.结果表明:与液氮轧制后Cu-20Zn合金相比,液氮轧制后Cu-20Zn-1.2Si合金的强度显著提升,这是因为加入的硅元素使得层错能降低,使其变形后具有细小的晶粒以及较高的位错和孪晶密度.Cu-20Zn-1.2Si合金热稳定性的提升源自层错能(SFE)的降低以及硅原子与位错的相互作用,使得其内部位错运动受阻.退火后的Cu-20Zn-1.2Si合金优异的强度和塑性的综合力学性能源自其组织内部细小的晶粒、形变孪晶以及大量的退火孪晶和HAGBs的共同作用.

参考文献

[1] Haiming Wen;Troy D. Topping;Dieter Isheim.Strengthening mechanisms in a high-strength bulk nanostructured Cu-Zn-Al alloy processed via cryomilling and spark plasma sintering[J].Acta materialia,20138(8):2769-2782.
[2] Yonghao Zhao;Yuntian Zhu;Enrique J. Lavernia.Strategies for Improving Tensile Ductility of Bulk Nanostructured Materials[J].Advanced Engineering Materials,20108(8):769-778.
[3] Valiev RZ.;Alexandrov IV.;Islamgaliev RK..Bulk nanostructured materials from severe plastic deformation [Review][J].Progress in materials science,20002(2):103-189.
[4] 康志新;彭勇辉;赖晓明;李元元;赵海东;张卫文.剧塑性变形制备超细晶/纳米晶结构金属材料的研究现状和应用展望[J].中国有色金属学报,2010(4):587-598.
[5] Yuntian T. Zhu;Xiaozhou Liao.Nanostructured metals: Retaining ductility[J].Nature materials,20046(6):351-352.
[6] 安祥海;吴世丁;张哲峰.层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响[J].金属学报,2014(2):191-201.
[7] Gong, Y.L.;Wen, C.E.;Wu, X.X.;Ren, S.Y.;Cheng, L.P.;Zhu, X.K..The influence of strain rate, deformation temperature and stacking fault energy on the mechanical properties of Cu alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:199-204.
[8] 刘满平;王俊;蒋婷慧;吴振杰;谢学锋;刘强;Hans J.ROVEN.高压扭转大塑性变形Al-Mg铝合金中的层错和形变孪晶[J].中国有色金属学报,2014(6):1383-1392.
[9] 伞星源;梁晓光;程莲萍;沈黎;朱心昆.层错能对冷轧超细晶铜及铜铝合金力学性能的影响[J].中国有色金属学报(英文版),2012(4):819-824.
[10] Kawasaki, M.;Ahn, B.;Langdon, T.G..Effect of strain reversals on the processing of high-purity aluminum by high-pressure torsion[J].Journal of Materials Science,201017(17):4583-4593.
[11] Gong, Y.L.;Wen, C.E.;Li, Y.C.;Wu, X.X.;Cheng, L.P.;Han, X.C.;Zhu, X.K..Simultaneously enhanced strength and ductility of Cu-xGe alloys through manipulating the stacking fault energy (SFE)[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:144-149.
[12] 秦丽元;连建设;蒋恩臣;刘中原.不同结构纳米晶镍钴合金的力学性能[J].中国有色金属学报,2013(10):2846-2850.
[13] Y.H. Zhao;X.Z. Liao;Z. Horita;T.G. Langdon;Y.T. Zhu.Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu–Zn alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20081/2(1/2):123-129.
[14] X.H. An;Q.Y. Lin;S.D. Wu.The influence of stacking fault energy on the mechanical properties of nanostructured Cu and Cu-Al alloys processed by high-pressure torsion[J].Scripta materialia,201110(10):954-957.
[15] S. Qu;X.H. An;H.J. Yang.Micro structural evolution and mechanical properties of Cu-Al alloys subjected to equal channel angular pressing[J].Acta materialia,20095(5):1586-1601.
[16] Pei-Ling Sun;Y.H. Zhao;J.C.Cooley;M.E. Kassner;Z. Horita;T.G. Langdon;E.J. Lavernia;Y.T.Zhu.Effect of stacking fault energy on strength and ductility of nanostructured alloys: An evaluation with minimum solution hardening[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20091/2(1/2):83-86.
[17] Wang Y;Chen M;Zhou F;Ma E.High tensile ductility in a nanostructured metal.[J].Nature,20026910(6910):912-915.
[18] Huang X;Hansen N;Tsuji N.Hardening by annealing and softening by deformation in nanostructured metals.[J].Science,20065771(5771):249-251.
[19] Keiichiro Oishi;Isao Sasaki;Junichi Otani.Effect of silicon addition on grain refinement of copper alloys[J].Materials Letters,200315(15):2280-2286.
[20] Y. Zhang;N.R. Tao;K. Lu.Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles[J].Acta materialia,200811(11):2429-2440.
[21] AASHISH ROHATGI;KENNETH S. VECCHIO.The Influence of Stacking Fault Energy on the Mechanical Behavior of Cu and Cu-Al Alloys: Deformation Twinning, Work Hardening, and Dynamic Recovery[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20011(1):135-145.
[22] T.Ungar;S.Ott;P.G.Sanders.Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis[J].Acta materialia,199810(10):3693-3699.
[23] M. A. MEYERS;O. VOHRINGER;V. A. LUBARDA.THE ONSET OF TWINNING IN METALS: A CONSTITUTIVE DESCRIPTION[J].Acta materialia,200119(19):4025-4039.
[24] Jeno Gubicza;Nguyen Q. Chinh;Janos L. Labar;Zoltan Hegedus;Terence G. Langdon.Principles of self-annealing in silver processed by equal-channel angular pressing: The significance of a very low stacking fault energy[J].Materials Science & Engineering. A, Structural Materials: Properties, Misrostructure and Processing,20103(3):752-760.
[25] Svetlana Nestorovic;Desimir Markovic.Influence of alloying on the anneal hardening effect in sintered copper alloys[J].Materials transactions,19993(3):222-224.
[26] X.H. An;S.D. Wu;Z.F. Zhang.Enhanced strength-ductility synergy in nanostructured Cu and Cu-Al alloys processed by high-pressure torsion and subsequent annealing[J].Scripta materialia,20125(5):227-230.
[27] H.W. Zhang;K. Lu;R. Pippan.Enhancement of strength and stability of nanostructured Ni by small amounts of solutes[J].Scripta materialia,20116(6):481-484.
[28] P. Xue;B.L. Xiao;Z.Y. Ma.Enhanced strength and ductility of friction stir processed Cu-Al alloys with abundant twin boundaries[J].Scripta materialia,20139(9):751-754.
[29] S. Wronski;J. Tarasiuk;B. Bacroix.Microstructure heterogeneity after the ECAP process and its influence on recrystallization in aluminium[J].Materials Characterization,2013:60-68.
[30] Sangbong Yi;Igor Schestakow;Stefan Zaefferer.Twinning-related microstructural evolution during hot rolling and subsequent annealing of pure magnesium[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20091/2(1/2):58-64.
[31] Yoshimasa Takayama;Jerzy A. Szpunar.Stored Energy and Taylor Factor Relation in an Al-Mg-Mn Alloy Sheet Worked by Continuous Cyclic Bending[J].Materials transactions,20047(7):2316-2325.
[32] N.K. Kumar;B. Roy;J. Das.Effect of twin spacing, dislocation density and crystallite size on the strength of nanostructured α-brass[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2015:139-145.
[33] X.H. An;S. Qu;S.D. Wu;Z.F. Zhang.Effects of stacking fault energy on the thermal stability and mechanical properties of nanostructured Cu–Al alloys during thermal annealing[J].Journal of Materials Research,20113(3):407-415.
[34] C.S. Pande;B.B. Rath;M.A. Imam.Effect of annealing twins on Hall-Petch relation in polycrystalline materials[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20041/2(1/2):171-175.
[35] X.H. Chen;L. Lu;K. Lu.Grain size dependence of tensile properties in ultrafine-grained Cu with nanoscale twins[J].Scripta materialia,20114(4):311-314.
[36] Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale[J].Science,2009Apr.17 TN.5925(Apr.17 TN.5925):349.
[37] D.K. Yang;P.D. Hodgson;C.E. Wen.Simultaneously enhanced strength and ductility of titanium via multimodal grain structure[J].Scripta materialia,20109(9):941-944.
[38] Z.W. Wang;Y.B. Wang;X.Z. Liao.Influence of stacking fault energy on deformation mechanism and dislocation storage capacity in ultrafine-grained materials[J].Scripta materialia,20091(1):52-55.
[39] O.Bouaziz;S.Allain;C.Scott.Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels[J].Scripta materialia,20086(6):484-487.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%