欢迎登录材料期刊网

材料期刊网

高级检索

采用热分解法在270℃制备钛基RuO2-TiO2氧化物涂层电极材料。利用循环伏安、电化学阻抗谱等方法研究Ti/RuO2-TiO2电极分别在0.5 mol/L H2SO4、0.5 mol/L Na2SO4和1.0 mol/L NaOH电解液中的超电容行为。结果表明:在酸性溶液和碱性溶液中Ti/RuO2-TiO2电极有较低的电荷转移电阻和优异的赝电容特性,比电容分别达到550 F/g和578 F/g;而在Na2SO4溶液中,该电极的电荷转移电阻较高,表现为典型的双电层电容特征,比电容仅为335 F/g;经历2000次循环充放电测试后,该电极在中性Na2SO4溶液中的稳定性最高,荷电能力仅下降3%;在酸性H2SO4溶液和碱性NaOH溶液中,该电极的荷电能力分别下降17%和29%。结合SEM和能谱分析可知:RuO2-TiO2在Na2SO4溶液中几乎不发生腐蚀,表现出良好的循环稳定性;RuO2-TiO2涂层在NaOH溶液中发生严重的面腐蚀,而在H2SO4溶液中则发生严重的点蚀,导致活性氧化物减少,荷电能力下降。

RuO2-TiO2 coating were prepared by thermal decomposition method on pure titanium TA2 substrate at 270℃. The supercapacitor behavior of RuO2-TiO2 coating was investigated by cyclic voltammetry(CV), electrochemical impedance spectroscopy (EIS) and charging-discharging test in 0.5 mol/L H2SO4, 0.5 mol/L Na2SO4 and 1.0 mol/L NaOH electrolytes, respectively. The results show that the Ti/RuO2-TiO2 electrode has low charge transfer resistance in acidic and alkaline electrolytes, and the specific capacitance of 550 F/g and 578 F/g are obtained in these two electrolytes, respectively. Conversely, the electrode has relative higher charge transfer resistance and lower specific capacitance (335 F/g) in neutral Na2SO4 electrolyte than that of in acidic and alkaline electrolytes. However, the electrode losing 17%and 29%of the maximum capacity after 2000 charging-discharging cycles in acidic and alkaline electrolytes, respectively, but just only 3%lost in neutral Na2SO4 solution. Combined with the SEM and EDS analysis, the electrode is hardly corroded in Na2SO4 solution, thus exhibits good cycle stability. In contrast, Ti/RuO2-TiO2 electrodes occur serious surface corrosion in NaOH solution, while occurring serious pitting corrosion in H2SO4 solution. Severe corrosion results in a significantly reduction of active substance, and thus reduces the charge capacity of the electrode.

参考文献

[1] LI Xue-liang;XING Yan;WANG Hua;WANG Hua-lin;WANG Wei-dong;CHEN Xiang-ying.Synthesis and characterization of uniform nanoparticles of γ-Mo2N for supercapacitors[J].中国有色金属学报(英文版),2009(03):620-625.
[2] John R. Miller;Patrice Simon.Electrochemical Capacitors for Energy Management[J].Science,20085889(5889):651-652.
[3] Guoping Wang;Lei Zhang;Jiujun Zhang.A review of electrode materials for electrochemical supercapacitors[J].Chemical Society Reviews,20122(2):797-828.
[4] 朱君秋;王欣;娄长影;邵艳群;张腾;唐电.烧结温度对热分解制备的RuO2电容性能的影响[J].金属热处理,2013(8):65-69.
[5] 邵艳群;伊昭宇;朱君秋;娄长影;马晓磊;唐电.高比能量Ti/(Ir0.3Sn(0.7-x)Cex)O2电极材料的制备及其电化学性能[J].中国有色金属学报,2015(3):714-719.
[6] 孙俊梅;王欣;魏宗平;邵艳群;张腾;唐电.烧结温度对Ti/RuO2-CeO2超电容性能的影响[J].中国稀土学报,2011(6):718-723.
[7] Shao, Yan-Qun;Yi, Zhao-Yu;He, Chong;Zhu, Jun-Qiu;Tang, Dian.Effects of Annealing Temperature on the Structure and Capacitive Performance of Nanoscale Ti/IrO2-ZrO2 Electrodes[J].Journal of the American Ceramic Society,20155(5):1485-1492.
[8] Sun Wen;Joon-Woo Lee;In-Hyeong Yeo;Jongman Park;Sun-il Mho.The role of cations of the electrolyte for the pseudocapacitive behavior of metal oxide electrodes, MnO{sub}2 and RuO{sub}2[J].Electrochimica Acta,20042/3(2/3):849-855.
[9] 刘田田;朱银海;刘恩辉;罗珍玉;胡添添;李增鹏;丁锐.Fe3+/Fe2+氧化还原电解液在高性能聚苯胺/SnO2超级电容器中的应用[J].中国有色金属学报(英文版),2015(8):2661-2665.
[10] Laurence Mayrand-Provencher;Dominic Rochefort.Influence of the Conductivity and Viscosity of Protic Ionic Liquids Electrolytes on the Pseudocapacitance of RuO2 Electrodes[J].The journal of physical chemistry, C. Nanomaterials and interfaces,20094(4):1632-1639.
[11] Hu CC;Chang KH;Lin MC;Wu YT.Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors[J].Nano letters,200612(12):2690-2695.
[12] 刘泓;甘卫平;郭桂全;刘继宇;李祥;郑峰.RuO2·nH2O薄膜的制备以及物相演变和伏安特性[J].中国有色金属学报,2010(3):522-528.
[13] L.A. Pocrifka;C. Goncalves;P. Grossi;P.C. Colpa;E.C. Pereira.Development of RuO_2-TiO_2 (70-30) mol% for pH measurements[J].Sensors and Actuators, B. Chemical,20062(2):1012-1016.
[14] Chen, Xu;Chen, Kunfeng;Wang, Hao;Xue, Dongfeng.A colloidal pseudocapacitor: Direct use of Fe(NO3)(3) in electrode can lead to a high performance alkaline supercapacitor system[J].Journal of Colloid and Interface Science,2015:49-57.
[15] W.G. Pell;B.E. Conway.Quantitative modeling of factors determining Ragone plots for batteries and electrochemical capacitors[J].Journal of Power Sources,19962(2):255-266.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%