欢迎登录材料期刊网

材料期刊网

高级检索

基于热压罐成型工艺,选择了树脂柱Z向增强泡沫芯材、碳纤维Z向增强泡沫芯材、Kevlar纤维缝纫增强泡沫芯材3种Z向增强复合材料结构,对夹芯结构进行了低速冲击损伤和冲击后压缩(CAI)性能研究,考察了不同Z向增强方式对冲击损伤面积和破坏模式的影响。结果表明,Z向增强对泡沫芯材产生了初始损伤,其冲击后损伤面积大于未增强泡沫夹芯结构;但Z向增强改变了夹芯结构的压缩破坏机制。通过选用合适的Z向增强材料和Z向增强参数,能够提高夹芯结构的压缩强度和CAI强度。其中当增强材料为碳纤维,增强参数为10mm×10mm时,压缩强度提高了13%,CAI强度提高超过40%。

Resin column reinforced,carbon fiber prepreg bar reinforced and kevlar fiber stitched reinforced foam core sandwich composites were produced using the same face sheets based on the autoclave manufacturing technology.The prepared sandwich structures were tested under low-velocity impact and post-impact compression.The post-impact damage characteristics and damage modes were also studied.The results indicate that initial damage of foam-core is caused by the Z-reinforcement,and the post-impact damage area increases compared with that of the unreinforced one,while the compressive failure mechanism of foam core sandwich composites is changed by the Z-reinforcement.The compressive strength and the CAI strength can be improved by choosing the right Z-reinforcement material and parameter,which increase by 13% and more than 40% respectively with carbon fiber prepreg bar reinforced at 10 mm×10 mm Z-reinforcement parameters.

参考文献

[1] Glaessgen E H, Raju I S. Debonding of stitched composite sandwich structures. Atlanta, GA: AIAA, 2000, 1614-2000.
[2] 杜善义, 章继峰, 张博明. 先进复合材料格栅结构(AGS)应用与研究进展 [J]. 航空学报, 2007, 28(2): 419-424.
[3] Seibert H. Applications for PMI foam in aerospace sandwich structures [J]. Reinforced Plastics, 2006, 50(1): 44-48.
[4] 郑晓霞, 郑锡涛, 屈天骄, 等. 缝纫泡沫芯夹层结构低速冲击损伤分析 [J]. 西北工业大学学报, 2010, 28(5): 774-779.
[5] Stanley L E, Adams D O. Development and evaluation of stitched sandwich panelsz, CR-211025. Washington: NASA, 2001.
[6] Marasco A I, Cartié D D R, Partridge I K, et al. Mechanical properties balance in novel Z-pinned sandwich panels: Out of plane properties [J]. Composites Part A, 2006, 37(2): 295- 302..
[7] Carastensen T C, Kunkel E, Magee C. X-cor advanced sandwich core material //33rd International SAMPE Technial Conference. Seattle, WA: CSA, 2001, 11: 452-466.
[8] 季苏东, 李 敏, 孙志杰, 等. 斜缝与Z-pin混合增强泡沫夹层复合材料力学性能实验研究 [J]. 复合材料学报, 2010, 27(4): 87-93.
[9] 郝继军, 张佐光, 李 敏, 等. X-cor夹层复合材料平压性能分析 [J]. 航空学报, 2008, 29(4): 1079-1083.
[10] 杜 龙, 矫桂琼, 黄 涛, 等. Z-pin增强泡沫夹层结构面压缩性能研究 [J]. 航空材料学报, 2008, 28(4): 101-105.
[11] 马元春, 韩海涛, 卢子兴, 等. 缝纫泡沫夹芯复合材料的刚度预测与试验验证 [J]. 复合材料学报, 2010, 27(5): 101-107.
[12] 马元春, 韩海涛, 卢子兴, 等. 缝纫泡沫夹芯复合材料失效强度的理论预测与试验验证 [J]. 复合材料学报, 2010, 27(5): 112-119.
[13] Zenkert D, Burman M. Failure mode shifts during constant amplitude fatigue loading of GFRP/foam core sandwich beams [J]. International Journal of Fatigue, 2011, 33: 217-222.
[14] 郑锡涛, 孙 秦, 李 野, 等. 全厚度缝合复合材料泡沫芯夹层结构力学性能研究与损伤容限评定 [J]. 复合材料学报, 2006, 23(6): 29-36.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%