欢迎登录材料期刊网

材料期刊网

高级检索

采用扫描电镜(SEM)、X射线衍射(XRD)、透射电镜(TEM)研究稀土Y对Mg-2Nd-0.5Zn-0.4Zr生物镁合金显微组织的影响,通过析氢、质量损失测试及电化学方法研究Mg-2Nd-0.5Zn-0.4Zr镁合金在模拟体液(SBF)中的生物腐蚀性能。结果表明:稀土Y的添加使得镁合金中析出相由连续分布变为断续状,分布趋于均匀,出现新的片状析出相Mg24Y5。稀土Y能使镁合金的耐生物腐蚀性能得到提高。添加1%的Y时,镁合金腐蚀速度最低为1.051 mm/a,仅为基础合金的40.81%。

Effects of rare earth Y on microstructure of Mg-2Nd-0.5Zn-0.4Zr magnesium alloys were investigated by scanning electronic microscopy (SEM), X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The biocorrosion properties of the Mg alloys in the simulated body fluid (SBF) were evaluated by hydrogen evolution, mass loss experiments and electrochemical methods. The results show that the morphology of the precipitated phase changes from continuous network to discontinuous disperse, and grain size is refined after the addition of Y, a new blocky Mg24Y5 phase forms. Y addition improves the biocorrosion properties of the alloys. When the Y addition is 1%, the corrosive speed of the alloy is the lowest, which is 1.051 mm/a, only 40.81%of that of the initial alloy.

参考文献

[1] 贺亚敏,申龙树,李慧,许红英,黄培林.几种生物材料的体内生物相容性评价的实验研究[J].吉林医学,2010(14):1939-1941.
[2] 章晓波,王章忠,袁广银.二次挤压对Mg-Nd-Zn-Zr生物镁合金组织与性能的影响[J].材料热处理学报,2013(02):103-107.
[3] 隋文渊 .镁铝合金及其涂层的生物相容性实验研究[D].南方医科大学,2012.
[4] ALVAREZ-LOPEZ M;PEREDA M D;del VALLE J A;FERNANDEZ-LORENZO M GARCIA-ALONSO M C RUANO O A ESCUDERO M L .Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids[J].ACTA BIOMATERIALIA,2010,6:1763-1771.
[5] Witte F;Fischer J;Nellesen J;Crostack HA;Kaese V;Pisch A;Beckmann F;Windhagen H .In vitro and in vivo corrosion measurements of magnesium alloys[J].Biomaterials,2006(7):1013-1018.
[6] GU X N;ZHOU W R;ZHENG Y F;CHENG Y WEI S C ZHONG S P .Corrosion fatigue behaviors of two biomedical Mg alloys-AZ91D and WE43-in simulated body fluid[J].ACTA BIOMATERIALIA,2010,6(12):4605-4613.
[7] 张佳,宗阳,袁广银,常建卫,付鹏怀,丁文江.新型医用Mg-Nd-Zn-Zr镁合金在模拟体液中的降解行为[J].中国有色金属学报,2010(10):1989-1997.
[8] Shingde M;Hughes J;Boadle R;Wills EJ;Pamphlett R .Macrophagic myofasciitis associated with vaccine-derived aluminium.[J].The Medical Journal of Australia,2005(3):145-146.
[9] YUEN C K;IP W Y .Theoretical risk assessment of magnesium alloys as degradable biomedical implants[J].ACTA BIOMATERIALIA,2010,6:1808-1812.
[10] WAIZY H;SEITZ J M;REIFENRATH J;WEIZBAUER A BACH F W MEYER-LINDENBERG A DENKENA B WINGHAGEN H .Biodegradable magnesium implants for orthopedic applications[J].Journal of Materials Science,2013,48(01):39-50.
[11] KUBáSEK J;VOJTěCH D .Structural characteristics and corrosion behavior of biodegradable Mg-Zn,Mg-Zn-Gd alloys[J].Journal of Materials Science(Materials in Medicine),2013,24(07):1615-1626.
[12] NING Z L;WANG H;LIU H H;CAO F Y, WANG S T, SUN J F .Effects of Nd on microstructures and properties at the elevated temperature of a Mg-0.3Zn-0.32Zr alloy[J].Materials&Design,2010,31(09):4438-4444.
[13] 姜东梅 .Mg-Zn-Ca-Zr/Nd/Y 生物镁合金组织、力学性能和腐蚀行为研究[D].吉林:吉林大学,2014.
[14] NG W F;CHIU K Y;CHENG F T .Effect of pH on the vitro corrosion rate of magnesium degradable implant material[J].Materials Science and Engineering C,2010,30(06):898-903.
[15] 王伟 .新型Mg-Zn-RE系高强高韧镁合金的开发[D].兰州理工大学,2008.
[16] Jian-Wei Chang;Xing-Wu Guo;Peng-Huai Fu;Li-Ming Peng;Wen-Jiang Ding .Effect of heat treatment on corrosion and electrochemical behaviour of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy[J].Electrochimica Acta,2007(9):3160-3167.
[17] 章晓波,袁广银,王章忠.铸造镁合金 Mg-Nd-Zn-Zr 的生物腐蚀性能[J].中国有色金属学报,2013(04):905-911.
[18] ZHANG X B;YUAN G Y;MAO L;NIU J L, FU P H, DING W J .Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy[J].Journal of the Mechanical Behavior of Biomedical Materials,2012,7:77-86.
[19] 黄荣,陈明安,路学斌.AZ31镁合金表面聚吡咯的化学氧化合成及其耐蚀性能[J].物理化学学报,2011(01):113-119.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%