本文对三维气粒两相均匀各向同性湍流进行了直接数值模拟.气相控制方程组采用分布投影方法进行求解,微分方程采用六紧致阶差分格式和快速Fourier变换结合求解;计算颗粒场时,采用Lagrangian方法.由该方法得到的能谱和各统计量与由谱方法得到的对应值进行了比较,吻合十分理想,对不同Stocks数颗粒在流场内的瞬态分布也进行了初步模拟,并观察到局部富集现象,证明该方法是进行两相湍流直接数值模拟行之有效的方法.
参考文献
[1] | Rai M M;Moin P .Direct Simulation of Turbulent Flow Using Finite-Difference Schemes[J].Journal of Computational Physics,1991,96:15-53. |
[2] | Lele S K .Compact Finite Difference with Spectral Like Resolution[J].Journal of Computational Physics,1992,103:16-42. |
[3] | Fu D X;Ma Y W .A High Order Accurate Difference Scheme for Complex Flow Fields[J].Journal of Computational Physics,1997,134:1-15. |
[4] | CHU P C;Fan C W .A Three-Point Combined Compact Difference Scheme[J].Journal of Computational Physics,1998,140:370-399. |
[5] | CHU P C;Fan C W .A Three-Point Six-Order Staggered Combined Compact Difference Scheme[J].Mathematical and Computer Modelling,2000,32:323-340. |
[6] | Coppen Scott W .Particle Behavior Using Direct Numerical Simulation of Isotropic Turbulence[D].Master Dissertation Tufts University,1998. |
[7] | CHORIN A J .Numerical Solution of the Navier-Stokes Equations[J].Mathematics of Computation,1968,22:745-762. |
[8] | Eswaran E;Pope S B .An Examination of Forcing in Direct Numerical Simulations of Turbulence[J].Computers and Fluids,1988,16:257-278. |
[9] | Overholt MR.;Pope SB. .A deterministic forcing scheme for direct numerical simulations of turbulence[J].Computers & Fluids,1998(1):11-28. |
[10] | 周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1991 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%