{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用射频等离子体增强化学气相沉积法(RF-PECVD)在衬底上沉积氮化硅薄膜.用台阶仪、X射线光电子能谱(XPS)、透射电镜(TEM)和扫描电镜(SEM)等手段对薄膜的厚度、成分、结构及形貌进行表征,并探讨了各工艺参数对薄膜沉积速率的影响.","authors":[{"authorName":"杜平凡","id":"40c0a942-e048-452d-a050-ccf2235846aa","originalAuthorName":"杜平凡"},{"authorName":"席珍强","id":"1ad6e3a8-9107-4f12-96f6-789b82973e27","originalAuthorName":"席珍强"},{"authorName":"汪新颜","id":"9547fefa-c6bc-40e9-9563-993a844eeee6","originalAuthorName":"汪新颜"},{"authorName":"金达莱","id":"20d0f32d-4785-4249-9be8-60c146d3bf01","originalAuthorName":"金达莱"},{"authorName":"王勇","id":"8c6476e5-2546-4052-a0dd-aee14d183f24","originalAuthorName":"王勇"}],"doi":"","fpage":"417","id":"d1e81da9-6082-4e2a-80c6-fe5501dda802","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"36f65f00-6ae3-42d2-8d19-2fe4fdca7d21","keyword":"氮化硅薄膜","originalKeyword":"氮化硅薄膜"},{"id":"66162630-b497-48b4-98fb-603c4be47e58","keyword":"衬底","originalKeyword":"钢衬底"},{"id":"d2e67be9-c2ea-41dd-9fc9-32831506d641","keyword":"RF-PECVD","originalKeyword":"RF-PECVD"},{"id":"2ccb700f-90d6-4df8-b7fe-67a13a890b1b","keyword":"沉积速率","originalKeyword":"沉积速率"}],"language":"zh","publisherId":"gncl200803021","title":"RF-PECVD法在衬底上沉积氮化硅薄膜的研究","volume":"39","year":"2008"},{"abstractinfo":"我们用混合物理化学气相沉积法(hybrid physical-chernical vapor deposition简称为HPCVD)以氩气为背景气体,在不锈衬底上于不同条件下制备了一批MgB2超导薄膜样品.用扫描电子显微镜获取了相关的SEM图像,并对膜的成分进行了能谱分析(EDX)的.当把不锈衬底MgB2超导薄膜弯曲不同角度之后,膜面上均出现了裂纹.裂纹的数量和宽度随弯曲的角度的增大而增加,但是膜始终紧紧地覆着在衬底上不脱落.因此我们可以说覆着在不锈衬底上的MgB2超导薄膜具有了很好的韧性.在膜中我们也发现有大量的数十纳米大小的晶粒.这个尺寸的纳米粒子的作用可以用来平衡MgB2膜内结构和表面晶粒的活性之间的相互作用.MgB2纳米粒子的存在是MgB2超导膜表现出韧性的关键角色.","authors":[{"authorName":"王银博","id":"81c4980e-062c-43e0-a3f0-efe90c1ec42a","originalAuthorName":"王银博"},{"authorName":"易声宇","id":"91c4bc61-3a10-4451-91a7-eee9a40170c5","originalAuthorName":"易声宇"},{"authorName":"冯庆荣","id":"c3643799-7698-495f-a6f7-3bda7bdc9ef5","originalAuthorName":"冯庆荣"}],"doi":"10.3969/j.issn.1000-3258.2008.02.002","fpage":"101","id":"891013c2-1202-4b39-a7b2-1e17f59c24b5","issue":"2","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"10a16aa3-5708-486f-894d-a2aa8511ba5f","keyword":"混合物理化学气相沉积法(HPCVD)","originalKeyword":"混合物理化学气相沉积法(HPCVD)"},{"id":"2db3f8b6-9712-4789-b61d-98989718910b","keyword":"MgB2超导薄膜","originalKeyword":"MgB2超导薄膜"},{"id":"d2013e05-5f42-4386-a344-6347f53e2d36","keyword":"不锈衬底","originalKeyword":"不锈钢衬底"},{"id":"37ba950d-02f7-4547-86a1-0934ef904d27","keyword":"韧性","originalKeyword":"韧性"},{"id":"2124db5f-59f2-405a-af52-457ca77e79d1","keyword":"纳米粒子","originalKeyword":"纳米粒子"}],"language":"zh","publisherId":"dwwlxb200802002","title":"纳米粒子在不锈衬底MgB2超导膜中的作用","volume":"30","year":"2008"},{"abstractinfo":"以改性二氧化锆的过渡层,用溶胶—凝胶法在不锈衬底上成功制备了锆钛比为52/48的锆钛酸铅膜.扫描电镜分析表明,膜的表面平整,无裂纹.X射线分析结果说明,经650℃退火30min,后膜为纯的钙钛矿相.以衬底为下电极、直径为0.32mm的金上电极,测量了0.8μm膜的电滞回线及其它性能,膜的乘余极化为18μC/cm2.","authors":[{"authorName":"李坤","id":"c8ef8a31-46ee-4c9c-8835-cb23844e775d","originalAuthorName":"李坤"},{"authorName":"陈王丽华","id":"af7a5dd6-bf1f-4842-a2bd-33e0f24402f8","originalAuthorName":"陈王丽华"},{"authorName":"蔡忠龙","id":"12f21114-e943-4e30-826c-d750b87c0821","originalAuthorName":"蔡忠龙"}],"doi":"","fpage":"308","id":"a24f8d92-f955-4af1-9d1e-66a8cae20497","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c8ea53af-de26-421b-b638-e35f4e5182fe","keyword":"锆钛酸铅","originalKeyword":"锆钛酸铅"},{"id":"d9ba7ba4-d943-4326-829f-a5179ba121db","keyword":"陶瓷","originalKeyword":"陶瓷"},{"id":"f4294fe6-fdf6-4d5c-9927-7011fcc2863a","keyword":"薄膜","originalKeyword":"薄膜"},{"id":"e905522a-87c8-4310-9094-d14ba920a3e8","keyword":"不锈衬底","originalKeyword":"不锈钢衬底"},{"id":"11bb6cea-5bde-44f8-b950-d8ec6f1b2659","keyword":"阻挡层","originalKeyword":"阻挡层"}],"language":"zh","publisherId":"gncl200103033","title":"不锈衬底上锆钛酸铅膜的制备","volume":"32","year":"2001"},{"abstractinfo":"我们用混和物理化学气相沉积法(HPCVD)在不锈衬底上原位制备了以MgB2厚膜(约10微米厚)为过渡层的MgB2超导厚膜(约20微米厚)样品,两层膜总厚约30微米.X光衍射实验表明过渡层为(101)取向的织构膜,表层MgB2超导厚膜接近多晶膜,但有较强(101)取向,两者均含有少量的Mg和MgO杂相.此超导厚膜样品的Tc(onset)=37.8K,Tc(zero)=36.6K,ΔT=1.2K.对此样品的弯曲实验表明,以曲率半径500微米弯曲到180°后,样品仍具有Tc(onset)=37.8K,Tc(zero)=36.4K的超导电性.样品剖面SEM观测表明该膜结构致密,表面厚膜层和过渡层之间连接紧密.样品表面的SEM观测表明虽然样品弯曲导致表面MgB2超导厚膜面出现了裂缝,甚至有小部分膜面的脱落,但过渡层始终紧紧附着在不锈衬底上.这表明过渡层MgB2厚膜的存在大大地提高样品整体的柔韧性,展现了不锈衬底上的MgB2厚膜超导带(线)巨大的开发潜力和诱人的广阔应用前景.","authors":[{"authorName":"陈莉萍","id":"7aef581f-0634-49cf-8a99-92ccdf4c8957","originalAuthorName":"陈莉萍"},{"authorName":"丁莉莉","id":"3c3ba80d-cb57-41b3-bde8-fdf0599f7f89","originalAuthorName":"丁莉莉"},{"authorName":"庄承","id":"3dd0b851-3c74-46df-8136-cf41417d8673","originalAuthorName":"庄承钢"},{"authorName":"张开诚","id":"1c4de28d-e28a-453f-9d3e-0123b15a56f2","originalAuthorName":"张开诚"},{"authorName":"陈晋平","id":"0855719a-7613-4607-b0c3-14bf24952514","originalAuthorName":"陈晋平"},{"authorName":"徐军","id":"1e70335b-aa83-41fe-aff4-d3f2482ea5b9","originalAuthorName":"徐军"},{"authorName":"安玲","id":"5f7cb2ee-c99b-4b44-9015-cd52c64a7566","originalAuthorName":"安玲"},{"authorName":"闫昌硕","id":"8ca90423-31c1-4e8e-ae42-f8373d638847","originalAuthorName":"闫昌硕"},{"authorName":"熊光成","id":"b03a6dbf-db53-4860-984e-ba66cea76c40","originalAuthorName":"熊光成"},{"authorName":"冯庆荣","id":"0226ab05-a05f-427f-84e1-c7db00641c5d","originalAuthorName":"冯庆荣"}],"doi":"10.3969/j.issn.1000-3258.2006.01.007","fpage":"31","id":"9f2b3d04-7109-4397-b308-30463e14bf1e","issue":"1","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"f271f93e-10db-4f19-8836-a401861184d2","keyword":"混合物理化学气相沉积(HPCVD)","originalKeyword":"混合物理化学气相沉积(HPCVD)"},{"id":"a7133a16-3ab7-4569-a2db-5a5530836146","keyword":"MgB2超导厚膜","originalKeyword":"MgB2超导厚膜"},{"id":"8181790e-e2ba-4e95-9f6b-7f82ed12b100","keyword":"过渡层","originalKeyword":"过渡层"},{"id":"5070c89f-0e47-4238-9337-b27a795229b0","keyword":"不锈衬底","originalKeyword":"不锈钢衬底"},{"id":"bc3550b2-d6b5-4a49-be3b-2064db4c71e0","keyword":"韧度","originalKeyword":"韧度"}],"language":"zh","publisherId":"dwwlxb200601007","title":"不锈衬底MgB2厚膜韧性的研究","volume":"28","year":"2006"},{"abstractinfo":"在抛光的和未抛光的不锈衬底上,利用微波等离子体化学气相沉积(MPCVD)方法从甲烷和氢气的混合气体中沉积碳纳米管薄膜,并对其场发射性能进行了研究.实验发现,不锈衬底的机械抛光能降低碳纳米管膜的开启场强,增大它的发射电流密度.在同一场强7.5 V/μm下,衬底未抛光样品的电流密度为2.9 mA/cm2,而衬底抛光样品的电流密度达到5.5 mA/cm2.低开启场强和大发射电流密度意味着β增大,说明机械抛光能使碳纳米管膜的β增大.","authors":[{"authorName":"樊志琴","id":"dabb698b-e6d5-4824-b6f7-c033249df2d6","originalAuthorName":"樊志琴"},{"authorName":"朱庆芳","id":"794a5e81-f5f5-40ea-893b-4d06714dc8a1","originalAuthorName":"朱庆芳"},{"authorName":"杨仕娥","id":"d999c52d-90e1-4518-b8c1-6f90d0c8504a","originalAuthorName":"杨仕娥"},{"authorName":"姚宁","id":"cf8096b4-ed2c-4d20-9e5f-a20d2a5dd4aa","originalAuthorName":"姚宁"},{"authorName":"鲁占灵","id":"45f108c3-36e4-4e08-bffd-5e5af86e9255","originalAuthorName":"鲁占灵"},{"authorName":"张兵临","id":"26cc3fda-9ff8-42c6-9424-fc6941b85788","originalAuthorName":"张兵临"}],"doi":"10.3969/j.issn.1000-985X.2005.05.040","fpage":"954","id":"0f76a20a-a507-496a-b7f4-7ffc07019431","issue":"5","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"fcedec94-44c9-4b1e-b8fa-639a202d136e","keyword":"碳纳米管膜","originalKeyword":"碳纳米管膜"},{"id":"c7a3ff9c-a35e-4d72-8d41-c934132a0803","keyword":"场发射","originalKeyword":"场发射"},{"id":"2081bdbd-74fa-4175-b5c0-3c0da8fcdebf","keyword":"MPCVD","originalKeyword":"MPCVD"},{"id":"a14bf9bf-ffe9-424b-a417-846aa28c7674","keyword":"拉曼光谱","originalKeyword":"拉曼光谱"}],"language":"zh","publisherId":"rgjtxb98200505040","title":"不锈衬底的抛光处理对碳纳米管薄膜场发射性能的影响","volume":"34","year":"2005"},{"abstractinfo":"为了利用液相电沉积技术实现在金属衬底表面全方位电沉积类金刚石(DLC)薄膜,采用不同尺度的不锈钢片作为衬底,在表面电沉积了DLC薄膜,利用X射线光电子能谱、Raman光谱和扫描电子显微镜分别对衬底两面薄膜的化学成分、微观结构和表面形貌进行了分析.结果显示:对于尺度大于石墨阳极的不锈衬底,仅在衬底正对着阳极的一面实现了DLC薄膜的沉积;而对于尺度小于阳极的不锈衬底,在衬底两面都有DLC薄膜沉积,且两面薄膜结构相似,形貌相近.利用准静态电场理论对实验结果进行了解释,提出在金属衬底表面实现液相电沉积DLC薄膜的前提条件是存在垂直于衬底表面的电场分量,为进一步实现在复杂形状的导电性衬底表面沉积DLC薄膜提供了理论依据.","authors":[{"authorName":"李瑞山","id":"0cd7b5fb-47e3-4f34-ada3-f09b53aa947c","originalAuthorName":"李瑞山"},{"authorName":"冯有才","id":"17785087-fb42-4cdb-8560-d9064faf311b","originalAuthorName":"冯有才"},{"authorName":"王璇","id":"5d927523-b67e-43b8-a114-c169aeac6331","originalAuthorName":"王璇"},{"authorName":"张培增","id":"6ad0c5ab-006a-4d3d-bbec-4435a0a49828","originalAuthorName":"张培增"},{"authorName":"谢二庆","id":"c2de5e9c-dab1-40e9-a411-270c08c96573","originalAuthorName":"谢二庆"},{"authorName":"杨华","id":"41fe6094-a2d1-4638-bf4e-c4ab44e4b35a","originalAuthorName":"杨华"}],"doi":"10.11896/j.issn.1005-023X.2016.02.014","fpage":"56","id":"a7a6e922-46ae-47b1-87ae-eb4bd3470ad2","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"d4b2d068-414c-42d2-80b0-850912bb6f7f","keyword":"类金刚石薄膜","originalKeyword":"类金刚石薄膜"},{"id":"4a5e76bf-e74e-467e-ae42-b2f12681db48","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"af509521-ec2a-4d9e-a584-794ddd1f96e0","keyword":"全方位沉积","originalKeyword":"全方位沉积"}],"language":"zh","publisherId":"cldb201602014","title":"不锈衬底两面同时液相电沉积类金刚石薄膜及其沉积机理研究","volume":"30","year":"2016"},{"abstractinfo":"研究了通过热丝CVD法在施加了Ni-P/Cu复合中间过渡层的W18Cr4V高速衬底表面进行金刚石涂层的沉积技术以及不同压力条件对沉积出的CVD金刚石涂层质量的影响.最后通过扫描电镜分别对Cu、Ni-P以及不同反应压力下沉积的金刚石涂层的表面形貌进行了检测分析,通过XRD、拉曼光谱仪、洛氏硬度仪对金刚石涂层性能进行检测分析.结果表明:Ni-P/Cu复合中间过渡层可以明显的抑制Fe、Co的催石墨化作用.在此基础上通过沉积参数的优化,在W18Cr4V高速衬底表面成功沉积出高质量的CVD金刚石涂层.压力为4 kPa条件下沉积的CVD金刚石涂层较5 kPa的金刚石颗粒晶型明显、分布致密.","authors":[{"authorName":"马玉平","id":"9d7b212c-8539-4fd3-8626-241dc439278f","originalAuthorName":"马玉平"},{"authorName":"王金龙","id":"993607aa-fc71-48d9-baba-11d8ded48008","originalAuthorName":"王金龙"}],"doi":"","fpage":"1041","id":"8365721a-cba6-46ed-a510-76296454f7e2","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"aa6ed5fa-14f1-4123-8d1f-3b4e53203b58","keyword":"高速衬底","originalKeyword":"高速钢衬底"},{"id":"d77c04ff-5382-47d0-9321-a8c3eb4e6e48","keyword":"Ni-P/Cu复合中间过渡层","originalKeyword":"Ni-P/Cu复合中间过渡层"},{"id":"33f08bfc-8a59-4847-8286-1ff4b7939758","keyword":"CVD金刚石涂层","originalKeyword":"CVD金刚石涂层"}],"language":"zh","publisherId":"rgjtxb98201504033","title":"W18Cr4V高速衬底CVD金刚石涂层沉积技术研究","volume":"44","year":"2015"},{"abstractinfo":"介绍用混合物理化学气相沉积法(HPCVD)制备的不锈衬底MgB2超导厚膜样品.该样品的Tc(onset)=38K,Tc(0)=27K.X光衍射图形表明它是(101)方向织构的致密厚膜.这种膜具有较强的韧性,同时和衬底有高度的结合性.当其被弯曲到约200微米半径的弧度时,膜面会出现条状裂纹,但仍有少部分膜面未被破坏,保持完整,表现出较好的韧性.","authors":[{"authorName":"王新峰","id":"c2bf9db3-362c-4e11-83b4-6c4e61f8f409","originalAuthorName":"王新峰"},{"authorName":"郭荆璞","id":"b41d55e4-2c44-4deb-8521-e59c9af3b145","originalAuthorName":"郭荆璞"},{"authorName":"贾璋","id":"afe42fff-8607-47fe-9bca-4993f3eaef77","originalAuthorName":"贾璋"},{"authorName":"吕莹","id":"ff58c671-7eab-4a69-ac85-3a316064919b","originalAuthorName":"吕莹"},{"authorName":"朱萌","id":"c06e6345-ca1d-4d03-a0eb-2419081b4137","originalAuthorName":"朱萌"},{"authorName":"王晓楠","id":"bdbf2fcf-3e5b-47bf-b862-cb5867396a7f","originalAuthorName":"王晓楠"},{"authorName":"陈晋平","id":"67c58791-84ca-448f-97c9-9e057aad6cd6","originalAuthorName":"陈晋平"},{"authorName":"徐军","id":"0d02b541-2822-4ef3-8af2-69ddd8a8fbf3","originalAuthorName":"徐军"},{"authorName":"冯庆荣","id":"350f623e-a349-450c-a09c-98331c813a46","originalAuthorName":"冯庆荣"}],"doi":"10.3969/j.issn.1000-3258.2004.04.013","fpage":"344","id":"832181b9-8eff-43b0-b421-c74715dd9c81","issue":"4","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"aa13d289-8ea6-4d79-89f3-55b71563adfc","keyword":"MgB2","originalKeyword":"MgB2"},{"id":"7e90415c-8e76-46db-b7d5-4282ff5eaf9a","keyword":"厚膜超导体","originalKeyword":"厚膜超导体"},{"id":"fc2f6e2f-0c2b-44e9-9b2a-0c261013d3d7","keyword":"不锈衬底","originalKeyword":"不锈钢衬底"},{"id":"06417da8-6f7a-4903-b975-ce7ca3d93ab1","keyword":"SEM图","originalKeyword":"SEM图"},{"id":"b71f0bbf-eb56-4d7c-a5a7-03dc9801b512","keyword":"X-光衍射","originalKeyword":"X-光衍射"}],"language":"zh","publisherId":"dwwlxb200404013","title":"初探混合物理化学气相沉积法(HPCVD)制备不锈衬底MgB2超导厚膜样品","volume":"26","year":"2004"},{"abstractinfo":"我们用混合物理化学气相沉积法(HPCVD)制备了一批不锈衬底的MgB2超导厚膜样品,厚度在10~30μm间,Tc(onset)是37.8~37.2K,超导转变宽度ΔT在1.2K左右,是(101)方向织构的致密厚膜,并有少许MgO杂相.对样品进行弯折研究,随着弯曲角度的增加,膜面出现不同程度的条状裂纹,但仍能保持膜面的基本完整;虽然样品的超导起始转变温度降低、转变温区变宽,性能有所下降,但超导特性仍能保持在一个很好的水平上.这个结果表明了采用HPCVD方法制备不锈衬底带材将会很好地克服MgB2超导膜由于硬脆的性质而无法绕制磁体的问题,有着十分重要的应用意义.","authors":[{"authorName":"庄承","id":"510d5c75-e04b-4243-b2bc-fbe2eb4dd172","originalAuthorName":"庄承钢"},{"authorName":"安玲","id":"cfb3f5a4-1f4f-47c4-9d63-75c8eb14e1c1","originalAuthorName":"安玲"},{"authorName":"陈莉萍","id":"e0c47e64-80c8-4454-9c53-30be16f1a334","originalAuthorName":"陈莉萍"},{"authorName":"丁莉莉","id":"3fbe910b-2e42-4b3e-92a8-70b23a3d634f","originalAuthorName":"丁莉莉"},{"authorName":"张开诚","id":"01c05421-642d-4222-9471-8f7c020cfce8","originalAuthorName":"张开诚"},{"authorName":"陈晋平","id":"c5d84b47-d212-4865-a604-6b602727e973","originalAuthorName":"陈晋平"},{"authorName":"徐军","id":"97ec13d7-0f35-4bea-ac8b-2c444791c19c","originalAuthorName":"徐军"},{"authorName":"冯庆荣","id":"01916db3-c838-4a80-a4f4-88e74ffc78a3","originalAuthorName":"冯庆荣"},{"authorName":"甘子钊","id":"9489ccb3-b513-4193-9fd7-528a6381f03b","originalAuthorName":"甘子钊"}],"doi":"10.3969/j.issn.1000-3258.2005.02.002","fpage":"103","id":"d5df8f28-bb84-4c3d-8fc8-b564647f89d0","issue":"2","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"8850db86-47db-401b-a65c-8244bdd0943c","keyword":"混合物理化学气相沉积(HPCVD),MgB2超导厚膜,不锈衬底,韧度","originalKeyword":"混合物理化学气相沉积(HPCVD),MgB2超导厚膜,不锈钢衬底,韧度"}],"language":"zh","publisherId":"dwwlxb200502002","title":"混合物理化学气相沉积法制备不锈衬底MgB2超导厚膜样品的韧度研究","volume":"27","year":"2005"},{"abstractinfo":"采用复合络合剂,在2cr12不锈上直接化学镀Ni-W-P,并对镀层的形貌、成分、组织结构及性能进行了检测和分析.结果表明:不锈经过合适的前处理后,得到的镀层光亮、均匀,表面呈胞状组织;在400℃热处理后,开始析出Ni3P相;镀态层的硬度HK值由8186 MPa提高至11850 MPa;结合力、耐磨性也有明显增强.","authors":[{"authorName":"耿冰霜","id":"cf5f481e-dbe8-415b-9796-b2e96005958b","originalAuthorName":"耿冰霜"},{"authorName":"卫英慧","id":"6c727669-fa39-47e5-b519-dc9550f1be44","originalAuthorName":"卫英慧"},{"authorName":"侯利锋","id":"d42ccb63-ff23-4ed8-82d0-e9f84b07507f","originalAuthorName":"侯利锋"},{"authorName":"李杉","id":"92c9a1e2-8ce6-46e0-88d8-9c693cb559f9","originalAuthorName":"李杉"},{"authorName":"杨海燕","id":"100c9d0c-c332-4f45-884e-3653eba93dce","originalAuthorName":"杨海燕"},{"authorName":"许并社","id":"8e77b63f-dc47-4dfa-9866-f388c36beaa9","originalAuthorName":"许并社"}],"doi":"","fpage":"71","id":"b610e69f-053f-41a3-8c0f-8ee958b7e855","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"8b233603-43b1-4e81-b9ed-7ad28594a772","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"80eba730-33fc-443f-9346-4d6e1a986107","keyword":"Ni-W-P合金","originalKeyword":"Ni-W-P合金"},{"id":"a09aa2d5-7cd3-4967-b501-1390ad3215d9","keyword":"组织结构","originalKeyword":"组织结构"},{"id":"65631c91-67d5-4a15-b7d9-395af83b8d0d","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"xyjsclygc2009z1016","title":"不锈衬底化学镀Ni-W-P三元合金组织及性能研究","volume":"38","year":"2009"}],"totalpage":2545,"totalrecord":25447}