欢迎登录材料期刊网

材料期刊网

高级检索

In this paper, neural network control systems for decreasing the spatter of CO2 welding have been created. The Generalized inverse Learning Architecture(GILA), the SPecialized inverse Learning Architecture(SILA)-I & H and the Error Back Propagating Model(EBPM) are adopted respectively to simulate the static and dynamic welding control processes. The results of simulation and experiment show that the SILA-I and EBPM have betted properties. The factors affecting the simulating results and the dynamic response quality have also been analyzed.

参考文献

[1]
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%