欢迎登录材料期刊网

材料期刊网

高级检索

A large deposit of high phosphorus iron ore in China contains an average of 1.2% phosphorus and 50% iron and it has not been utilized. In current work, a novel process to remove phosphorus of the ore has been proposed. The novel process has been demonstrated theoretically and experimentally. The theoretical work (numerical simulation) was carried out with HSC chemistry package and a mathematical model developed using the coexistence theory of slag structure. Gas-based reduction and melt separation experiments were then designed and conducted. Simulation results shows that that all iron compounds in the ore could be reduced to metallic iron using CO/ H2 under temperature above 1000K and the yield of iron is more than 90% under either atmosphere; P can not be reduced and exists as Ca3(PO4)2; in the melt separation process, iron metallization ratio, melting temperature and CaO-adding ratio affect the phosphorus partition between slag and molten metal and CaO-adding ratio is the most distinguished parameter. Results of gas-based reduction agreed well with the simulation except for iron metallization ratio being less than predicted. This difference is mainly attributed to kinetic condition. Results of melt separation experiment show most P is left in the slag sample and some P in the metal sample exists as slag inclusion..

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%