欢迎登录材料期刊网

材料期刊网

高级检索

采用低温水溶液法制备ZnO纳米花,将其与TiO2纳米颗粒以不同的质量比混合制备成复合浆料,采用刮涂法涂敷在掺氟的SnOz透明导电玻璃(FTO)上制备ZnO纳米花-TiO2纳米颗粒复合薄膜光阳极,与Pt对电极和电解质组装成染料敏化太阳能电池(DSSC)。通过光伏性能和电化学阻抗谱测试分析,研究ZnO纳米花与TiO2纳米颗粒的质量比对电池性能的影响。结果表明:随着光阳极中TiO2纳米颗粒的增加,DSSC的开路电压和填充因子提高,当ZnO与TiO2的质量比为83:17时,光电转换效率最高达3.20%;ZnO—TO2染料电池的阻抗谱类似于Gerischer阻抗谱,电子的扩散阻抗与背反应复合阻抗相耦合。

The composite photoanodes with different mass ratios of ZnO nano flowers to TiO2 nano-particles were prepared on transparent conductive fluorine-doped SnO2 (FTO) substrates by doctor-blade technique. These anodes were sealed together with Pt-counter electrode to assemble into dye-sensitized solar celI(DSSC). The effect of mass ratio of ZnO nano-flowers to TiO2 nano-partieles on the performance and electron transport properties of DSSC were studied by means of the photocurrent - voltage curve and electrochemical impedance spectroscopy. The results show that open-circuit voltage and fill factor of DSSC increase with increasing the mass ratio of TiO2 nanopartices in composite photoanodes. The energy conversion efficiency reaches 3. 20% when the mass ratio of ZnO to TiO2 is 83 : 17. The impedance spectrum of DSSC assembled from ZnO - TiO2 composite anodes is similar to Gerisher impedance, and the impedance of diffusion is coupled with impedance of recombination.

参考文献

[1] O'Regan B. Gr?ztel M. A Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991, 353: 737-739.
[2] Da C, Hao Z, Song H, et al. Preparation and enhanced photoelectrochemical performance of coupled bicomponent ZnO-TiO2 nanocomposites [J]. J Phys Chem C, 2008, 112: 117-122.
[3] Uintana M, Edvinsson T, Hagfeldt A, et al. Comparison of dye-sensitized ZnO and TiO2 solar sells: Studies of charge transport and carrier life time [J]. J Phys Chem C, 2007,111: 1035-1041.
[4] Xie Y, Joshi P, Seth B, et al. Electrolyte effects on electron transport and recombination at ZnO nanorods for dye-sensitized solar cells [J]. J Phys Chem C, 2010, 114 (41): 17880-17888.
[5] Xu C K, Shin P, Cao L L, et al. Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells [J]. J Phys Chem C, 2010, 114(1): 125-129.
[6] Martinson A B F, Elam J W, Hupp J T, et al. ZnO nanotube based dye-sensitized solar cells [J]. Nano Letters, 2007, 7(8): 2183-2187.
[7] Da C, Hao Z, Song H, et al. Preparation and enhanced photoelectrochemical performance of coupled bicomponent ZnO-TiO2 nanocomposites [J]. J Phys Chem C, 2008, 112: 117-122.
[8] Wang M L, Huang C G, Cao Y G, et al. The effects of shell characteristics on the current-voltage behaviors of dye-sensitized solar cells based on ZnO/TiO2 core/shell arrays [J]. Appl Phys Lett, 2009, 94: 263506.
[9] Law M, Greene L E, Radenovic A, et al. ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar sells [J]. J Phys Chem B, 2006, 110: 22652-22663.
[10] Fabregat-Santiago F, Garcia-Belmonte G, Bisquert J, et al. Decoupling of transport, charge storage, and interfacial charge transfer in the nanocrystalline TiO2/electrolyte system by impedance methods [J]. J Phys Chem B, 2002, 106: 334-339.
[11] Wang Q, Ito S, Gra1tzel M, et al. Characteristics of high efficiency dye-sensitized solar cells [J]. J Phys Chem B, 2006, 110: 25210-25221.
[12] Bisquert J. Comment on "diffusion impedance and space charge capacitance in the nanoporous dye-sensitized electrochemical solar cell" and "electronic transport in dye-sensitized nanoporous TiO2 solar cellss comparison of electrolyte and solid-state devices" [J]. J Phys Chem B, 2003, 107: 13541-13543.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%