欢迎登录材料期刊网

材料期刊网

高级检索

分析了掺Er3+碲酸盐玻璃的热力学稳定性能,研究了掺Er3+碲酸盐玻璃的吸收和荧光光谱性质;应用Judd-Ofelt理论计算了碲酸盐玻璃中Er3+离子的强度参数Ω(Ω2=4.79×10-20cm2, Ω4=1.52×10-20cm26=0.66×10-20cm2),计算了离子的自发跃迁几率,荧光分支比;应用McCumber理论计算了Er3+的受激发射截面(σe=10.40×10-21cm2)、Er3+离子4I13/24I15/2 发射谱的荧光半高宽(FWHM=65.5nm)及各能级的荧光寿命(4I13/2能级为τrad=3.99ms);比较了不同基质玻璃中Er3+离子的光谱特性,结果表明掺铒碲酸盐玻璃更适合于掺Er3+光纤放大器实现宽带和高增益放大.

Er3+-doped tellurite glasses with various Na2O/K2O ratios were prepared by conventional glass
melting. Glass transition temperature Tg and crystallization temperature Tx were tested by DSC. The effect of mixed alkali on thermal
stability of tellurite glasses was described. The results show that the mixed alkali is beneficial to tellurite glasses on thermal stability and the best
mixed alkali molar ratio is Na2O/K2O=1/4. According to absorption spectra, Judd-Ofelt intensity parameters were determined and used to
calculate the radiation rates, fluorescent branch ratio and radiative lifetimes of Er3+ in tellurite glasses. The J-O parameters were
obtained, Ω2=4.79×10-20cm2, Ω4=1.52×10-20cm2, Ω6=0.70×10-20cm2. The stimulated emission cross sections
e=10.40×10-21cm2) of the Er3+ ion 4I13/24I15/2 transition was calculated by the McCumber theory. The FWHM(FWHM=65.5nm) of the 4I13/24I15/2 emission and
lifetimes of every level of Er3+ ion were measured and the lifetime of 4I13/2 level is 3.99ms. The spectroscopic properties of Er3+ ion
were compared in different glasses. The conclusions indicate that tellurite glass is much more beneficial for optical fiber amplifier to realize broadband
and high gain amplification.

参考文献

[1] Masuda H, Kawai S, Aida K. Electronic letters, 1998, 34 (13): 1342--1343.
[2] Jiang S, Luo T, Hwang B C, et al. Non-Cryst. Solids, 2000, 263: 364--368.
[3] Hwang B C, Jiang S B, Luo T, et al. IEEE Photo. Tech. Lett., 2001, 13 (3): 197--199.
[4] Tanabe S, Yoshii S, Hirao K, et al. Phys. Rev. B., 1992, 45: 4620--4625.
[5] Feng Y, Hao Z, Chen X B, et al. Acta. Phys. Sin., 1997, 46: 2454--2460.
[6] Wang J S, Vogel E M, Snitzer E. Optical Materials. 1994, 3: 187--192.
[7] Feng X, Tanada T. Am. Ceram. Soc., 2001, 84: 165--171.
[8] Mori A, Kobayashi K, Yamada M. Electron Lett., 1998, 34: 887--893.
[9] Tanabe S, Sugimoto N, Ito S, et al. Non-Cryst. Solids, 2000, 87: 670--675.
[10] Kuroiwa Y, Sugimoto N, Ochiai K, et al. OFC, 2001, Tu15--1.
[11] Choi Y G, Kim K H, Heo J. Am. Ceram. Soc., 1999, 82: 2762--2768.
[12] Wang J S, Vogel E M, Snitzer E. Optical Materials, 1994, (3): 187--203.
[13] Wang J S, Vogel E M, Snitzer E, et al. Non-Cryst Solids, 1994, 178: 109.
[14] Judd B R. Phys. Rev., 1962, 127 (3): 750--761.
[15] Ofelt G S. J. Chem. Phys., 1962, 37 (3): 511--520.
[16] Tanabe S. Non-Cryst Solids, 1999, 259: 1--6.
[17] Zou X, Izumitani T. Non-Cryst. Solids, 1993, 162: 68--72.
[18] McCumber D E. Phys. Rev., 1964, 134 (2A): A299--A306.
[19] Lin H, Pun E Y B, Man S Q, et al. Opt. Soc. Am. B., 2001, 18: 602--605.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%