研究试样直径和高径比对3种镁基块体金属玻璃Mg65Cu25Gd10、Mg65Cu20Ni5Gd10和Mg75Ni10Gd10压缩变形行为的影响,探讨镁基块体金属玻璃断裂模式的转变机制.压缩应力-应变曲线和断口扫描电镜观察结果表明:镁基块体金属玻璃Mg65Cu25Gd10、Mg65Cu20Ni5Gd10和Mg75Ni10Gd10在压缩条件下可在3个不同的变形阶段发生断裂,第1个是弹性变形阶段,在此变形阶段金属玻璃都以解理方式断裂,无塑性;第2个变形阶段的断裂为解理和剪切混合方式断裂,金属玻璃具有一定的剪切塑性变形;第3个变形阶段为稳定剪切锯齿塑性流变阶段,在此变形阶段金属玻璃都是以剪切方式断裂,具有稳定的塑性变形;镁基块体金属玻璃的断裂模式与尺寸有关,减小试样的直径和高径比都有利于块体金属玻璃由解理断裂向剪切断裂的转变,强度和塑性也相应地得到提高.
参考文献
[1] | Huang YJ;Shen J;Sun JF .Bulk metallic glasses: Smaller is softer[J].Applied physics letters,2007(8):81919-1-81919-3-0. |
[2] | B.E. Schuster;Q. Wei;T.C. Hufnagel .Size-independent strength and deformation mode in compression of a Pd-based metallic glass[J].Acta Materialia,2008(18):5091-5100. |
[3] | W. F. Wu;Z. Han;Y. Li .Size-dependent "malleable-to-brittle" transition in a bulk metallic glass[J].Applied physics letters,2008(6):061908-1-061908-3-0. |
[4] | E. S. Park;J. Y. Lee;D. H. Kim;A. Gebert;L. Schultz .Correlation between plasticity and fragility in Mg-based bulk metallic glasses with modulated heterogeneity[J].Journal of Applied Physics,2008(2):023520-1-023520-10-0. |
[5] | C. J. Lee;J. C. Huang;T. G. Nieh .Sample size effect and microcompression of Mg_(65)Cu_(25)Gd_(10) metallic glass[J].Applied physics letters,2007(16):161913-1-161913-3-0. |
[6] | Guangyin Yuan;Cunling Qin;Akihisa Inoue .Mg-based bulk giassy alloys with high strength above 900 MPa and plastic strain[J].Journal of Materials Research,2005(2):394-400. |
[7] | Y.-K. Xu;H. Ma;J. Xu .Mg-based bulk metallic glass composites with plasticity and gigapascal strength[J].Acta materialia,2005(6):1857-1866. |
[8] | G. Yuan;A. Inoue .The effect of Ni substitution on the glass-forming ability and mechanical properties of Mg-Cu-Gd metallic glass alloys[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2005(1/2):134-138. |
[9] | Zhang ZF;Zhang H;Shen BL;Inoue A;Eckert J .Shear fracture and fragmentation mechanisms of bulk metallic glasses[J].Philosophical Magazine Letters,2006(10):643-650. |
[10] | J.T. Fan;Z.F. Zhang;S.X. Mao .Deformation and fracture behaviors of Co-based metallic glass and its composite with dendrites[J].Intermetallics,2009(6):445-452. |
[11] | Z.F. Zhang;J. Eckert;L. Schultz .Difference in compressive and tensile fracture mechanisms of Zr_(59)Cu_(20)Al_(10)Ni_8Ti_3 bulk metallic glass[J].Acta materialia,2003(4):1167-1179. |
[12] | F.F. Wu;Z.F. Zhang;S.X. Mao .Compressive properties of bulk metallic glass with small aspect ratio[J].Journal of Materials Research,2007(2):501-507. |
[13] | Z. F. ZHANG;H. ZHANG;X. F. PAN .Effect of aspect ratio on the compressive deformation and fracture behaviour of Zr-based bulk metallic glass[J].Philosophical Magazine Letters,2005(10):513-521. |
[14] | F. F. Wu;Z. F. Zhang;F. Jiang;J. Sun;J. Shen;S. X. Mao .Multiplication of shear bands and ductility of metallic glass[J].Applied physics letters,2007(19):191909-1-191909-3-0. |
[15] | F.F. Wu;Z.F. Zhang;J. Shen .Shear deformation and plasticity of metallic glass under multiaxial loading[J].Acta materialia,2008(4):894-904. |
[16] | Z. Han;H. Yang;W. F. Wu;Y. Li .Invariant critical stress for shear banding in a bulk metallic glass[J].Applied physics letters,2008(23):231912-1-231912-3-0. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%