为了改善玻璃纤维(GF)/乙烯基酯树脂(VER)复合材料的力学性能,将碳纳米管(CNTs)加入其中制得了碳纳米管/玻璃纤维/乙烯基酯树脂复合材料.然而,分别加入0.4wt%、0.8wt%、1.2wt%碳纳米管后,主要由基体贡献的层间剪切强度和纵向压缩强度分别从52.32MPa和258.34MPa下降到45.14MPa、50.11MPa、42.14MPa和240.99MPa、257.87MPa、235.27MPa,表明了碳纳米管的抗自由基效应对乙烯基酯树脂固化反应的抑制作用.通过添加另一种较高温分解的引发剂BPO进行补偿,其层间剪切强度和纵向压缩强度又分别提升到63.25MPa、70.35MPa、60.57MPa和299.12MPa、318.54MPa、280.11 MPa.动力机械热分析(DMA)也得到一致的结果,进一步证实了碳纳米管的抗自由基效应对复合材料力学性能的负面影响.
参考文献
[1] | Iijima S .Helical microtubules of graphitic carbon[J].NATURE,1991,354:56-58. |
[2] | 曲艳双,张福华,陈曰东.碳纳米管/碳纤维混杂多尺度增强体研究现状[J].玻璃钢/复合材料,2012(03):85-89. |
[3] | Zdenko Spitalsky;Dimitrios Tasis;Konstantinos Papagelis .Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties[J].Progress in Polymer Science,2010(3):357-401. |
[4] | Hui Qian;Emile S. Greenhalgh;Milo S. P. Shaffer .Carbon nanotube-based hierarchical composites: a review[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2010(23):4751-4762. |
[5] | Liu X M;Huang Z D;Oh S W;Zhang B Ma P C Yuen M M F Kim J K .Carbon nanotube (CNT)-based composites as electrode material for rechargcable Li-ion batteries:A review[J].Composites Science and Technology,2012,72:121-144. |
[6] | Schadler LS.;Ajayan PM.;Giannaris SC. .Load transfer in carbon nanotube epoxy composites[J].Applied physics letters,1998(26):3842-3844. |
[7] | D. Qian;E. C. Dickey;R. Andrews .Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites[J].Applied physics letters,2000(20):2868-2870. |
[8] | F. H. GOJNY;M. H. G. WICHMANN;B. FIEDLER .Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites[J].Composites, Part A. Applied science and manufacturing,2005(11):1525-1535. |
[9] | 吕晓敏,孙志杰,李敏,顾轶卓,张佐光.多壁碳纳米管/玻璃纤维/环氧树脂界面粘结特性研究[J].玻璃钢/复合材料,2012(01):24-28. |
[10] | Zhihang Fan;Kuang-Ting Hsiao;Suresh G. Advani .Experimental investigation of dispersion during flow of multi-walled carbon nanotube/polymer suspension in fibrous porous media[J].Carbon: An International Journal Sponsored by the American Carbon Society,2004(4):871-876. |
[11] | Fan ZH;Advani SG .Characterization of orientation state of carbon nanotubes in shear flow[J].Polymer: The International Journal for the Science and Technology of Polymers,2005(14):5232-5240. |
[12] | Annia Galano .Carbon nanotubes: promising agents against free radicals[J].Nanoscale,2010(3):373-380. |
[13] | M.J. Martinez-Morlanes;P. Castell;P.J. Alonso .Multi-walled carbon nanotubes acting as free radical scavengers in gamma-irradiated ultrahigh molecular weight polyethylene composites[J].Carbon: An International Journal Sponsored by the American Carbon Society,2012(7):2442-2452. |
[14] | K.L. LU;R.M. LAGO;Y.K. CHEN;M.L.H. GREEN;P.J.F. HARRIS;S.C. TSANG .Mechanical Damage of Carbon Nanotubes by Ultrasound[J].Carbon: An International Journal Sponsored by the American Carbon Society,1996(6):814-816. |
[15] | 田继斌,梁胜彪,隋刚,杨小平.羧基化多壁碳纳米管对T-1000碳纤维/环氧树脂复合材料性能的影响[J].玻璃钢/复合材料,2010(01):36-39,45. |
[16] | Rosselli F;Santare M H .Comparison of the short beam shear (SBS) and interlaminar shear device (ISD) tests[J].Composites Part A:Applied Science and Manufacturing,1997,28:587-594. |
[17] | Zhihang Fan;Michael H. Santare;Suresh G. Advani .Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes[J].Composites. Part A, Applied science and manufacturing,2008(3):540-554. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%