以RuCl3·3H2O水溶液为电沉积液,采用直流-示差脉冲组合电沉积技术,通过后续热处理工艺制备超级电容器用钽基RuO2·nH2O薄膜电极材料.用X射线衍射仪 (XRD)、红外光谱仪 (FTIR)、差热分析仪 (DTA)、扫描电镜 (SEM)和电化学分析仪,研究前驱体RuCl3·cH2O转化为RuO2·nH2O的物相演变行为以及微观组织形貌和循环伏安性能.结果表明:随着热处理温度升高,前驱体RuCl3·cH2O通过4步反应转变成RuO2·nH2O薄膜;该薄膜经历从无定形向晶体结构的转变.经300 ℃热处理的RuO2·nH2O薄膜电极材料的单位面积质量为2.5 mg/cm2,比电容达到512 F/g;当电压扫描速率从5 mV/s增加到250 mV/s 时,其比电容下降34%.
参考文献
[1] | Byung Jun Lee;S.R. Sivakkumar;Jang Myoun Ko .Carbon nanofibre/hydrous RuO_2 nanocomposite electrodes for supercapacitors[J].Journal of Power Sources,2007(2):546-552. |
[2] | Xiaorong Liu;Peter G. Pickup .Ru oxide supercapacitors with high loadings and high power and energy densities[J].Journal of Power Sources,2008(1):410-416. |
[3] | Chi-Chang Hu;Chen-Ching Wang;Kuo-Hsin Chang .A comparison study of the capacitive behavior for sol-gel-derived and co-annealed ruthenium-tin oxide composites[J].Electrochimica Acta,2007(7):2691-2700. |
[4] | GODFREY S;BRANKO N P .Performance optimization of a battery-capacitor hybrid system[J].Journal of Power Sources,2004,134:130-138. |
[5] | P. Staiti;F. Lufrano .A study of the electrochemical behaviour of electrodes in operating solid-state supercapacitors[J].Electrochimica Acta,2007(2):710-719. |
[6] | Hu CC;Su JH;Wen TC .Modification of multi-walled carbon nanotubes for electric double-layer capacitors: Tube opening and surface functionalization[J].The journal of physics and chemistry of solids,2007(12):2353-2362. |
[7] | ZHENG J P;XIN Y .characterization of RuO2-nH2O with various water contents[J].Journal of Power Sources,2002,110:86-90. |
[8] | Takuya Shinomiya;Vinay Gupta;Norio Miura .Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide[J].Electrochimica Acta,2006(21):4412-4419. |
[9] | FERNANDO P;JOAQUIN I;TERESA A C;CARLOS P ROSA M R JOSE M A JOSE M R .RuO2@xH2O/NiO composites as electrodes for electrochemical capacitors:Effect of the RuO2 content and the thermal treatment on the specific capacitance[J].Electrochimica Acta,2006,51:4693-4700. |
[10] | HWANG S W;HYUN S H .Synthesis and characterization of tin oxide/carbon aero gel composite electrodes for electrochemical supercapacitors[J].Journal of Power Sources,2007,172:451-459. |
[11] | Sujit Kumar Mondal;N. Munichandraiah .Anodic deposition of porous RuO_2 on stainless steel for supercapacitor studies at high current densities[J].Journal of Power Sources,2008(1):657-663. |
[12] | HAN J H;LEE S W;CHOI G J;LEE S Y HWANG C S DUSSARRAT C GATINEAU J .Chemical vapor deposition of Ru thin films with an enhanced morphology,thermal stability,and electrical properties using a RuO precursor[J].Chemistry of Materials,2009,21:207-209. |
[13] | 甘卫平,黎小辉,欧定斌,覃政辉.退火温度对钽基RuO2·nH2O电沉积薄膜电容性能的影响[J].中南大学学报(自然科学版),2006(04):660-664. |
[14] | DAVID E.Improved capacitor using amorphous RuO2[M].Florida:Evans Capacitor Company,2000 |
[15] | 亓淑艳,冯静,闫俊,侯相钰,张密林.海胆球形和纳米线形MnO2制备及其超级电容特性[J].中国有色金属学报,2008(01):113-117. |
[16] | Gujar TP;Shinde VR;Lokhande CD;Kim WY;Jung KD;Joo OS .Spray deposited amorphous RUO2 for an effective use in electrochemical supercapacitor[J].Electrochemistry communications,2007(3):504-510. |
[17] | 李良超,郝仕油,林秋月.水杨酸锰的热分解机理及纳米氧化锰形貌[J].中国有色金属学报,2004(12):2114-2119. |
[18] | DEAN JA.Lange's handbook of chemistry[M].New York:mcgraw-hill Book Company,inc,1972:642. |
[19] | Patake, VD;Lokhande, CD .Chemical synthesis of nano-porous ruthenium oxide (RuO2) zthin films for supercapacitor application[J].Applied Surface Science,2008(9):2820-2824. |
[20] | Marijan Vukovic;Dunja Cukman .Electrochemical quartz crystal microbalance study of electrodeposited ruthenium[J].Journal of Electroanalytical Chemistry: An International Journal Devoted to All Aspects of Electrode Kinetics, Interfacial Structure, Properties of Electrolytes, Colloid and Biological Electrochemistry,1999(2):167-173. |
[21] | KVASTEK K;HORVAT V .Electrochemical properties of hydrous ruthenium oxide films formed and measured at different potentials[J].Journal of Electroanalytical Chemistry,2001,511:65-78. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%