欢迎登录材料期刊网

材料期刊网

高级检索

采用电化学沉积工艺,在MEMS超级电容器的三维结构集流体上制备出聚吡咯( PPy)、聚吡咯/碳纳米管( PPy/CNT)、聚吡咯/石墨烯( PPy/GR)三种类型的膜电极。采用SEM对三种膜电极进行形貌观察,采用循环伏安、交流阻抗、恒电流充放电和循环充放电研究三种膜电极的电化学电容性能。结果表明,复合电极的微观结构稳定,复合薄膜和集流体之间的结合力大;基于三种膜电极的MEMS超级电容器电容量依次增大,阻抗依次减小,放电电流为1 mA时,比电容分别达到7.0、8.0、8.3 mF/cm2,经过5000次恒流充放电循环后,电容器的比电容分别保持了原来的72.9%、85.0%和89.2%。在PPy电极中引入CNT或GR后,MEMS超级电容器的电化学和膜电极结构稳定性可得到明显改善。

Three membrane electrodes for supercapacitors in micro-electro-mechanical-systems ( MEMS) were made of polypyr-role ( PPy) , carbon nanotube/polypyrrole ( CNT/PPy) and graphene/polypyrrole ( GR/PPy) electrodeposited on current collectors. The samples were characterized by scanning electron microscopy, electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge/discharge. Results indicate that there are strong adhesive forces between the electrode materials and the current collectors. The electrode resistances decrease in the order of PPy, CNT/PPy and GR/PPy. The specific capacitances are 7. 0,8. 0 and 8. 3 mF/cm2 at a discharge current of 1 mA and their retention rates after 5 000 charge/discharge cycles are 72. 9,85. 0 and 89. 2% for PPy, CNT/PPy and GR/PPy, respectively. The electrochemical performance and stability of the MEMS supercapacitors are improved significantly by adding CNTs or graphene to PPy.

参考文献

[1] 金双玲,邓洪贵,詹亮,乔文明,凌立成.用作双电层电容器电极材料的三维层次孔结构多孔炭的合成[J].新型炭材料,2012(02):87-92.
[2] Mária Filkusová,Andrea Fedorková,Renáta Ori(n)áková,Andrej Ori(n)ák,Zuzana Nováková,Lenka (S)kantárová.多壁纳米碳管对磷酸铁锂正极材料热稳定性及表面形貌的影响[J].新型炭材料,2013(01):1-7.
[3] 马旭莉,孙守斌,王忠德,杨宇娇,郝晓刚,臧杨,张忠林,刘世斌.碳纳米管/铁氰化镍/聚苯胺杂化膜对抗坏血酸的电催化氧化[J].新型炭材料,2013(01):26-32.
[4] 李胜,邱于兵,郭兴蓬.不同状态下聚吡咯膜的电化学阻抗[J].物理化学学报,2010(03):601-609.
[5] 王春晓,任鹏刚,刘蓬,谢利,张华,方长青.聚吡咯/石墨烯复合导电材料的制备及性能表征[J].功能材料,2012(16):2150-2152,2155.
[6] Joo-Hwan Sung;Se-Joon Kim;Soo-Hwan Jeong .Flexible micro-supercapacitors[J].Journal of Power Sources,2006(2):1467-1470.
[7] Sung J H;Kim S J;Lee K H .Fabrication of microcapacitors u-sing conducting polymer microelectrodes[J].Journal of Power Sources,2003,124(01):343-350.
[8] 周扬,王晓峰,张高飞,阮勇,尤政.基于聚吡咯微电极的MEMS微型超级电容器的研究[J].电子器件,2011(01):1-6.
[9] 薛荣,阎景旺,田颖,衣宝廉.镧掺杂的二氧化锰/碳纳米管电化学超级电容器复合电极[J].物理化学学报,2011(10):2340-2346.
[10] 靳瑜,陈宏源,陈名海,刘宁,李清文.碳纳米管/聚苯胺/石墨烯复合纳米碳纸及其电化学电容行为[J].物理化学学报,2012(03):609-614.
[11] Jiyoung Oh;Mikhail E.Kozlov;Bog Gi Kim .Preparation and electrochemical characterization of porous SWNT-PPy nanocomposite sheets for supercapacitor applications[J].Synthetic Metals,2008(15):638-641.
[12] John Chmiola;Celine Largeot;Pierre-Louis Taberna;Patrice Simon;Yury Gogotsi .Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors[J].Science,2010(Apr.23 TN.5977):480-483.
[13] Hao Zhang .Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries[J].Energy & environmental science: EES,2009(9):932-943.
[14] Kim K S;Zhao Y;Jang H et al.Large-scale pattern growth of graphene films for stretchable transpatent electro-des[J].Na-ture,2009,457(7230):706-710.
[15] Hye Ryung Byon;Seung Woo Lee;Shuo Chen .Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors[J].Carbon: An International Journal Sponsored by the American Carbon Society,2011(2):457-467.
[16] Wei Sun;Xuyuan Chen .Preparation and characterization of polypyrrole films for three-dimensional micro supercapacitor[J].Journal of Power Sources,2009(2):939-943.
[17] A review on electrochemical double-layer capacitors[J].Energy conversion & management,2010(12):2901-2912.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%