欢迎登录材料期刊网

材料期刊网

高级检索

Narrowing the bandgap of wide-bandgap semiconductor photocatalysts (for instance, anatase TiO2) by introducing suitable heteroatoms has been actively pursued for increasing solar absorption, but usually suffers from a limited thermodynamic/kinetic solubility of substitutional dopants in bulk and/or dopant-induced recombination centres. Here we report a red anatase TiO2 microsphere with a bandgap gradient varying from 1.94 eV on its surface to 3.22 eV in its core by a conceptually different doping approach for harvesting the full spectrum of visible light. This approach uses a pre-doped interstitial boron gradient to weaken nearby Ti-O bonds for the easy substitution of oxygen by nitrogen, and consequently it substantially improves the nitrogen solubility. Furthermore, no nitrogen-related Ti3+ was formed in the red TiO2 due to a charge compensation effect by boron, which inevitably occurs in common nitrogen doped TiO2. The red anatase TiO2 exhibits photoelectrochemical water splitting activity under visible light irradiation. The results obtained may shed light on how to increase high visible light absorbance of wide-bandgap photocatalysts.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%