通过加速旋转坩埚技术和Bi2O3/B2O3助溶剂生长技术研制新型磁光复合稀土铁石榴石单晶ReYbBiIG(Re:Tb3+、Ho3+、Y3+。从理论上解释了将两种具有相反符号法拉第温度和波长系数的掺铋稀土铁石榴石复合可以显著优化磁光性能,并成功制得具有大磁光优值、低饱和磁化强度、低近红外吸收、极小法拉第温度和波长系数的系列优质磁光单晶(如:Ho0.85Yb1.12Bi1.03Fe5O12和Tb2.06Yb0.46Bi0.48Fe5O12等)。研究表明,以新型磁光复合稀土铁石榴石单晶ReYbBiIG作为法拉第转子材料制得的新型光隔离器更适用于WDM光纤通讯系统对宽波段和温度稳定性的要求。
A new type of magneto-optical Faraday rotation iron garnet bulk single-crystal with composition of ReYbBiIG (Re:Tb3+, Ho3+, Y3+, etc.)
was designed and grown by using Bi2O3/B2O3 as main flux and using Accelerated Crucible Rotation Technique for single-crystal growth. It is
believed, that through combining of two types of Bi3+-substituted rare-earth iron garnets with opposite signs of Faraday rotation temperature
and wavelength coefficients, the magneto-optical properties could be much improved. Series of ReYbBiIG bulk single crystals with large magneto-optical
figure of merit, low magnetic field for saturation, low near-infrared absorption, and small Faraday rotation temperature and wavelength coefficients
were obtained, such as Ho0.85Yb1.12Bi1.03Fe5O12 and Tb2.06Yb0.46Bi0.48Fe5O12, etc. Investigation of ReYbBiIG used as Faraday rotator material for optical isolator indicates that our new designed and grown magneto-optical Faraday rotation crystals
are good candidate for temperature stabilized and wideband optical isolators employing in WDM optical fiber communication systems.
参考文献
[1] | Fischer G. J. Opt. Commun., 1987, 8: 18--20. [2] Shiraishi K. Appl. Opt., 1985, 24: 951--953. [3] Prabhakar A, Standil D D. Appl. Phys. Lett., 1997, 71: 51--53. [4] Machida K, Asahara Y, Ishikawa H, et al. J. Appl. Phys., 1987, 61: 3256-3258 [5] Matusuda M, Minemoto H, Kamada O. IEEE Trans. on Magnetics, 1987, MAG-23: 3479--3482. [6] Tamaki T, Kaneda H, Kawamura N. J. Appl. Phys., 1991, 70: 4581--4585. [7] Wittekoek S, Poma T J A, Robertson J M. Phys. Rev (B)., 1975, 12: 2777--2788. [8] Tamaki T, Tsushima T. J. Mag. Soc. Jap. (in Japanese), 1985, 9: 125--132. [9] Durcok S, Pollert E, Simsa Z, et al. Mat. Chem. Phys., 1996, 45: 124--129. [10] Tolksdorf W, Welz F. J. Crystal Growth, 1972, 13: 566--570. [11] Zhang S Y, Zhang Z L, Huang M, et al. Chin. Phys., 1992, 12: 740--744. [12] Honda Y, Hibiya T, Shiroki K. J. Mag. Soc. Japan, 1986, 10: 151--155. [13] Tamaki T, Kaneda H, Kawamura N. J. Appl. Phys., 1991, 70: 4581--4585. [14] Crossley W A, Cooper R W, Page J L, et al. Phys. Rev., 1969, 181: 890--898. [15] Booth R C, White E A D. J. Phys. (D), 1984, 17: 579--587. [16] Tshintaku T, Tate A, Mino S. Appl. Phys. Lett., 1997, 71: 1640--1642. [17] Ishikawa H, Nakajima K, Machida K, et al. Opt. Quantum Electron, 1990, 6: 517--528. [18] Zhuromsky O, Dotsch H, Lohmeyer M, et al. J. Lightwave Tech., 2001, 19: 214--221. [19] Fujita J, Levy M, Osgood R M, et al. Appl. Phys. Lett., 2000, 76: 2158--2160. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%