欢迎登录材料期刊网

材料期刊网

高级检索

以NaClO2为主要氧化剂,使用氧化漂白桉木浆制备C-6位羧基含量为o.8 mmol/g的TEMPO氧化纤维素,然后将其剪切为纳米纤维素(NCC).再以NCC为基材,以无水氯化镉及硫化钠为前驱体,用声化学法制备了NCC/CdS纳米复合光电材料.用X射线衍射(XRD)、场发射扫描电镜(SEM)、傅里叶红外光谱仪(FT-IR)以及光电化学实验对复合材料的结构及性能进行表征.结果表明,大量CdS纳米粒子复合在NCC基材上形成NCC/CdS纳米复合材料,CdS晶粒为立方型晶体,大小为7.3 nm.用NCC/CdS纳米复合材料形成的薄膜器件在可见光区域的透光率高达60%.这种复合材料可产生1.35μA的光电流,其光电转换效率为微晶纤维素/CdS复合材料的6倍.

参考文献

[1] GAO Beibei,Summarization of nano-cellulose,Value Engineering,34,272(2011)(高蓓蓓,纳米纤维素的概述,价值工程,34,272(2011))
[2] Tsuguyuki Saito,Masayuki Hirota,Naoyuki Tamura,Satoshi Kimura,Hayaka Fukuzumi,Laurent Heux,Akira Isogai,Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions,Biomacromolecules,10(7),1992(2009)
[3] Wojciech K.Czaja,David J.Young,Marek Kawecki,R.Malcolm Brown,The future prospects of microbial cellulose in biomedical applications,Biomacromolecules,8(1),1 (2007)
[4] Sheng-Chi Wu,Ying-Ke Lia,Application of bacterial cellulose pellets in enzyme immobilization,Journal of Molecular Catalysis B:Enzymatic,54(3-4),103(2008)
[5] Magdalena Zaborowska,Aase Bodin,Henrik B(a)ckdahl,Jenni Popp,Aaron Goldstein,Paul Gatenholm,Microporous bacterial cellulose as a potential scaffold for bone regeneration,Acta Biomaterialia,6(7),2540(2010)
[6] C.Legnani,C.Vilani,V.L.Calil,H.S.Barud,W.G.Quirino,C.A.Achete,S.J.L.Ribeiro,M.Cremona,Bacterial cellulose membrane as flexible substrate for organic light emitting devices,Thin Solid Films,517(3),1016(2008)
[7] Mu-Li Wang,Chun-Hong Wang,Wei Wang,Synthesis of CdS nanocomposites using macroporous ion-exchange resins,Materials Chemistry and Physics,104(1),162(2007)
[8] Jie Han,Huilan Su,Qun Dong,Di Zhang,Xiaoxiao Ma,Chunfu Zhang,Patterning and photoluminescence of CdS nanocrystallites on silk fibroin fiber,J Nanopart Res,12(1),347(2010)
[9] Laila Sheeney-Haj-Ichia,Bernhard Basnar,Itamar Willner,Efficient generation of photocurrents by using CdS/Carbon nanotube assemblies on electrodes,Angewandte Chemie,117(1),80(2005)
[10] Xin Li,Shiyan Chen,Weili Hu,Shuaike Shi,Wei Shen,Xiang Zhang,Huaping Wang,In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers,Carbohydrate Polymers,76(4):509(2009)
[11] SU Xia,TANG Aimin,In-situ composition of microcrystalline cellulose/CdS nanocomposites,Polymer Materrials Science and Engineering,27(9),134(2011)(苏霞,唐爱民,微晶纤维素/CdS纳米复合材料的原位复合反应,高分子材料科学与工程,27(9),134(2011))
[12] Masaya Nogi,Shinichiro Iwamoto,Antonio Norio Nakagaito,Hiroyuki Yano,Optically transparent nanofiber paper,Adv.Mater,21,1595(2009)
[13] MENG Xu,LU Yongjuan,DING Yong,CUI Jinfeng,YANG Baoping,JIA Junhong,Preparation of nano-crystalline CdS thin films and properties of photoelectric response,Functional Materials,2(Suppl.)(41),320(2010)(孟旭,卢永娟,丁勇,崔锦峰,杨保平,贾均红,CdS纳米晶薄膜的制备及光电性能研究,功能材料2(增刊)(41),320 (2010))
[14] DING Youxian,YU Yingchun,LIU Jianjun,ZUO Shengli,Synthesis and photocatalytic activity of cadmium sulfide with diferent crystal structure,Chemical Research,20(2),12(2009)(丁优仙,于迎春,刘建军,左胜利,不同晶型纳米CdS的合成及其光催化活性,化学研究,20(2),12(2009)
[15] SU Xia,TANG Aimin,Photoelectric properties of cellulose/CdS nano-composites prepared by sonochemical method,Functional Materials,2(42),333(2011)(苏霞,唐爱民,纤维素/CdS纳米复合材料的声化学制备及其光电性能,功能材料,2(42),333(2011))
[16] Hongyang Ma,Christian Burger,Benjamin S.Hsiao,Benjamin Chu,Ultrafine polysaccharide nanofibrous membranes for water purification,Biomacromolecules,12(4),970(2011)
[17] HAO Liyuan,Studies on the preparation and photoelectric characteristics and photocatalysis of nanostructure TiO2 thin films,Master thesis,Inner Mongol Normal University(2010)(郝丽媛,纳米TiO2薄膜材料的制备及其光电特性与光催化活性的研究,硕士学位论文,内蒙古师范大学(2010))
[18] R.Koenenkamp,R.Henninger,P.Hoyer,Photocarrier transport in colloidal titanium dioxide films,Journal of Physical Chemistry,97(28),7328(1993)
[19] P.Hoyer,H.Weller,Potential-dependent electron injection in nanoporous colloidal ZnO films,Journal of Physical Chemistry,99(38),14096(1995)
[20] M.Gratzel,Photoelectrochemical cells,Nature,414(2),338(2001)
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%