欢迎登录材料期刊网

材料期刊网

高级检索

研究了熔体旋淬和常规熔铸Ml(NiCoMnAl)5 贮氢合金的微结构和电化学行为。 S EM 和XRD分析表明, 熔体旋淬合金由细小的柱状晶组成, 它们的晶体结构与铸态一样, 都为 CaCu5 型六方晶体结构。 电化学测试表明, 旋淬态合金电极初始容量较高(>210  mA*h/g ), 经1~2 次循环就可达到最大放电容量。 旋淬速度为10  m/s的合金电极的放电容量(294  mA*h/g)稍高于铸 态合金电极的容量, 所有旋淬态合金电极充放电循环稳定性皆优于铸态合金。 在600  mA/g电流质量密度 下, 旋淬速度为10  m/s的合金电极具有较好的高倍率充放电能力, 但随着 循环次数的增加, 其容量稳定性稍次于旋淬速度为25  m/s和40  m/s的合金 电极。

The microstructure and electrochemical behavior s of Ml(NiCoMnAl)5 allo ys prepared by both the melt-spinning method and the conventional induction mel t ing were investigated. SEM and XRD analysis show that melt-spinning alloys are of columnar microstructure which belong to the CaCu5 type hexagonal crystal st ruct ure as same as as-cast alloy. The electrochemical measurements show that the in i tial capacities of melt-spinning alloy electrodes are all above 210  mA* h/g, reachi ng their maximum capacities after the second charge-discharge cycles. The maxim u m capacity (294mA*h/g) of melt spinning (10m/s) alloy electrodes is the sam e as t hat of as-cast alloy electrode, the stability of charge-discharge cycles of all melt-spinning alloy electrodes is better than that of the as-cast alloy electr od es. When charged at 600mA/g, the melt spinning (10m/s) alloy electrode has bette r high rate discharge capability; but with the cycle number increasing, the cy cl e stability is less than those electrodes of melt spinning rate of 25m/s and 4 0m/s.

参考文献

[1] Suzuki K;Yanagihara N;Kawano H et al.Effect of earth composition on the electrochemical properties of Ml(Ni-Mn-Al-Co)5 al loys[J].Journal of Alloys and Compounds,1993,192:173-175.
[2] Martin M;Gommel C;Borkhart C et al.Absorption and de sorption kinetics of hydrogen storage alloys[J].Journal of Alloys and Compounds,1996,238:193-201.
[3] Ratnakumar BV.;Bowman RC.;Hightower A.;Fultz B.;Witham C. .ELECTROCHEMICAL STUDIES ON LANI5-XSNX METAL HYDRIDE ALLOYS[J].Journal of the Electrochemical Society,1996(8):2578-2584.
[4] IWAKURA C;Kiwn I;Matsul N .Surface modification of Laves-phas e ZrV0.5Mn0.5Ni alloy electrodes with alkaline solution containi ng potassium borohydride as a reducing agent[J].Electrochimica Acta,1995,40:561-566.
[5] Yan D Y;Sandroch G;Suda S .Surface Modification of Zr0.5Ti0.5V0.75Ni1.25 Alloy Electrode in 6 mol/L KOH[J].Journal of Alloys and Compounds,1994,216:237-242.
[6] WEN Ming-fen,CHEN Lian,YU Bo,Tong Min.Surface modification for La1-xCex(NiCoMnAl)5 hydride electrode by hot charging in potassium borohydride solution[J].中国有色金属学会会刊,2000(05):595.
[7] Mishima R;Miyamura H;Sakai T et al.Hydrogen storage alloys rapidly solidified by the melt-spinning method and their characteristics as me tal hydride e lectrodes[J].Journal of Alloys and Compounds,1993,192:176-178.
[8] L.Chen;F.Wu .Advanced nanocrystalline Zr-based AB_2 hydrogen storage electrode materials for NiMH EV batteries[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,1999(0):508-520.
[9] 周煜;雷永泉;罗永春 et al.气体雾化贮氢电极合金Ml(Ni,Co,Mn,Ti)5的活化性能[J].金属学报,1996,32(08):857-860.
[10] Lei Y Q;Zhou Y;Luo Y C et al.Preparation and electroch emical properties of undirectionally solidified Ml(NiCoMnTi)5 alloys[J].Journal of Alloys and Compounds,1997,253-254:590-593.
[11] Gilman P S;Das S K .Rapidly solidified aluminum alloys for high temperature/high stiffness applications[J].Metal Powder Report,1989,44:616-620.
[12] Zheng G.;White RE.;Popov BN. .ELECTROCHEMICAL DETERMINATION OF THE DIFFUSION COEFFICIENT OF HYDROGEN THROUGH AN LANI4.25AL0.75 ELECTRODE IN ALKALINE AQUEOUS SOLUTION[J].Journal of the Electrochemical Society,1995(8):2695-2698.
[13] Wang CS.;Wang QD.;Lei YQ. .Studies of electrochemical properties of TiNi alloy used as an MH electrode. II. Discharge kinetics[J].Electrochimica Acta,1998(21/22):3209-3216.
[14] Wang CS.;Wang QD.;Lei YQ. .Studies of electrochemical properties of TiNi alloy used as an MH electrode - I. Discharge capacity[J].Electrochimica Acta,1998(21/22):3193-3207.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%