{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"多层片式陶瓷电容器(MLCC)容量命中率低是生产中普遍存在的问题.本文通过微观结构、金属层和介质层厚度、以及工序因素分析,探讨了引起MLCC容量分散的主要原因,提出了工序中应控制的因素,为MLCC生产过程控制、提高容量命中率提供了依据.","authors":[{"authorName":"张启龙","id":"9075aae4-25f7-4f9a-b13c-ea02c6bed8fa","originalAuthorName":"张启龙"},{"authorName":"杨辉","id":"b2f22bb8-48d1-441c-bee6-c1d66f514af2","originalAuthorName":"杨辉"},{"authorName":"王家邦","id":"024651d7-2744-4dde-86f6-f66e9607a3e0","originalAuthorName":"王家邦"},{"authorName":"魏文霖","id":"0c6269d7-f4c2-41fc-864f-d4dc71ec3bb1","originalAuthorName":"魏文霖"}],"doi":"10.3969/j.issn.1673-2812.2003.01.020","fpage":"72","id":"a9392708-e428-43be-bbb4-d01a341dc1c4","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"6ea9542f-bd52-4613-9e6e-2ddb2d866919","keyword":"多层陶瓷电容器","originalKeyword":"多层陶瓷电容器"},{"id":"32fcc141-0d78-4df5-9fbb-c28927b8b4ec","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"4786262b-952d-4bde-bc3b-d7dde3e70014","keyword":"命中率","originalKeyword":"命中率"}],"language":"zh","publisherId":"clkxygc200301020","title":"多层片式陶瓷电容器容量命中率的研究","volume":"21","year":"2003"},{"abstractinfo":"研究了烧结助剂ZnO-B2O3对BiNbO4陶瓷烧结特性及介电性能的影响.结果表明:ZnO-B2O3形成晶界玻璃相存在于晶粒之间,促进烧结,大幅度降低BiNbO4陶瓷的烧结温度,促使瓷体晶粒尺寸均匀和致密;但ZB的质量分数大于3%,阻碍晶粒长大,破坏晶体结构和排列,导致材料的缺陷和本征损耗增加,从而降低材料的介电性能.ZnO-B2O3的掺杂量以1%为最佳,在880℃保温4h,可达到97%理论密度,在100MHz测试频率下,εr=42,tanδ<1.5×10-3.","authors":[{"authorName":"张启龙","id":"0e8af78a-0b7e-4c31-91d0-5cbde9f6b0b9","originalAuthorName":"张启龙"},{"authorName":"杨辉","id":"60b28453-ff45-4d51-8590-1d043fdaa95e","originalAuthorName":"杨辉"},{"authorName":"魏文霖","id":"9b5dd52f-c1a7-41f2-be59-4b249803ee9e","originalAuthorName":"魏文霖"},{"authorName":"王信权","id":"ae29ff68-05f5-4416-99f7-fec383c7ef7c","originalAuthorName":"王信权"},{"authorName":"陆德龙","id":"f17d764a-10e6-4187-87c2-8911b74dc3a3","originalAuthorName":"陆德龙"}],"doi":"10.3969/j.issn.1001-1625.2004.04.021","fpage":"79","id":"f2c9c769-cec4-4436-8140-4c0dcd56273a","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"165bd05e-f115-4b82-8ee7-ca21c09ef910","keyword":"低温烧结","originalKeyword":"低温烧结"},{"id":"603a1a99-b94e-45a8-bdaa-e07c993e9080","keyword":"介电性能","originalKeyword":"介电性能"},{"id":"a3e4e7ed-02d0-4b51-91bd-bd1979033f70","keyword":"微波介质陶瓷","originalKeyword":"微波介质陶瓷"},{"id":"6692c976-b0eb-4cde-bed5-fd56514f7da1","keyword":"BiNbO4陶瓷","originalKeyword":"BiNbO4陶瓷"}],"language":"zh","publisherId":"gsytb200404021","title":"掺杂ZnO-B2O3低温烧结BiNbO4介质陶瓷的研究","volume":"23","year":"2004"},{"abstractinfo":"氮氧化硅(SiON)薄膜是一种新型的薄膜材料,具有优良的充电性能、机械性能、钝化性能和化学稳定性能,但杂质氢的存在限制了它的应用.详细阐述了氮化硅薄中氢杂质的存在活动及其对薄膜性能的影响,并提出了降低氢含量的合理方法.","authors":[{"authorName":"魏文霖","id":"d862fd03-a0f4-4030-b18c-d3d74c50ce2c","originalAuthorName":"魏文霖"},{"authorName":"孟祥森","id":"257a0eea-c6a3-45dd-8cb4-9ee675e7f411","originalAuthorName":"孟祥森"},{"authorName":"袁骏","id":"7ed9e5a7-aeb4-4b31-929d-c9f374b4708a","originalAuthorName":"袁骏"},{"authorName":"杨辉","id":"b702f94e-1a71-48ee-8f70-0582f2b53c49","originalAuthorName":"杨辉"},{"authorName":"葛曼珍","id":"a8c6f01c-aecb-4c75-99ff-7cee3d665d5c","originalAuthorName":"葛曼珍"},{"authorName":"季振国","id":"29e4c408-56a2-4470-a327-f8f56a99c35e","originalAuthorName":"季振国"}],"doi":"","fpage":"48","id":"f41a34d1-55fa-4788-b3c1-1b81df83453c","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"2d06474c-10e1-430b-86e9-81d14a0f3790","keyword":"氮氧化硅","originalKeyword":"氮氧化硅"},{"id":"a000a626-71a5-4af1-aac4-1f6f037b6bd9","keyword":"薄膜","originalKeyword":"薄膜"},{"id":"ae0e9854-9167-4c62-aeaf-4e893301e8ba","keyword":"性能","originalKeyword":"性能"},{"id":"4fafbebe-3e0c-4855-a933-871b224d1602","keyword":"杂质","originalKeyword":"杂质"},{"id":"abc83c8e-ec27-44e0-81aa-753b4a6a7064","keyword":"氢","originalKeyword":"氢"}],"language":"zh","publisherId":"cldb200003018","title":"SiON薄膜中氢的研究","volume":"14","year":"2000"},{"abstractinfo":"研究了45Mn2钢魏氏组织对其力学性能的影响.结果表明,一定量的魏氏组织有利于提高其强韧性.","authors":[{"authorName":"钟长文","id":"62a16d0c-647d-4cd1-95c5-e9a0024bb029","originalAuthorName":"钟长文"},{"authorName":"刘建华","id":"65af211a-2b3a-4d98-bb14-ae0cd3fbf4d5","originalAuthorName":"刘建华"}],"doi":"10.3969/j.issn.1001-0777.2002.03.001","fpage":"1","id":"18b0cbfb-b0d9-411b-a60d-94b38294e6bf","issue":"3","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"afb278f0-6870-4db2-995e-06fbac281ece","keyword":"45Mn2钢","originalKeyword":"45Mn2钢"},{"id":"89737183-39e7-4780-b887-349bf67b57c8","keyword":"魏氏组织","originalKeyword":"魏氏组织"},{"id":"f2acd931-7e20-4358-a158-e22dadf7929c","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"wlcs200203001","title":"45Mn2钢魏氏组织对其力学性能的影响","volume":"","year":"2002"},{"abstractinfo":"用扫描隧道显微镜(STM)观察了Fe-0.37C(质量分数,%)合金中魏氏组织铁素体的表面浮突,发现其浮突形状为帐篷型和复杂形态.切变机制不能解释魏氏组织表面浮突的形成过程,而扩散控制的台阶机制可合理地解释.魏氏组织的浮突高度为70—450nm,最大形状变形约0.36.","authors":[{"authorName":"薄祥正","id":"beaa42e9-dc0e-42f9-8a34-38fef2f47bc0","originalAuthorName":"薄祥正"},{"authorName":"方鸿生","id":"16034f00-e8d6-4d86-9f9e-b9c1b34d148b","originalAuthorName":"方鸿生"},{"authorName":"王家军","id":"1aaa85d3-c77a-402b-adc8-ea11a9f782eb","originalAuthorName":"王家军"},{"authorName":"王峥华","id":"83fd7fe5-0e2f-4c92-b887-907e3b37c8e2","originalAuthorName":"王峥华"}],"categoryName":"|","doi":"","fpage":"345","id":"17606cac-47f6-4a25-bb8b-33ab41ad3402","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"333be36e-8063-45f3-88ec-d320451b4720","keyword":"表面浮凸","originalKeyword":"表面浮凸"},{"id":"1a353ff0-f6bd-4c79-80c9-cd059e832cde","keyword":" Widmanstatten ferrite","originalKeyword":" Widmanstatten ferrite"},{"id":"1ae96154-0cf9-4d1e-8212-bff6ee843aa8","keyword":" scanning tunneling microscopy","originalKeyword":" scanning tunneling microscopy"},{"id":"05b95277-919a-400c-9769-09973ad81bbf","keyword":" shapede formation","originalKeyword":" shapede formation"}],"language":"zh","publisherId":"0412-1961_1998_4_6","title":"魏氏组织表面浮突的扫描隧道显微镜研究","volume":"34","year":"1998"},{"abstractinfo":"<正> 一般认为亚共析钢中魏氏组织降低机械性能,尤其是不利于冲击韧性。近年来研究结果则认为魏氏组织可以提高机械性能,也有人认为具有魏氏组织的亚共析钢,由于冷却速度快,增加了珠光体量,细化了铁素体晶粒,从而抵销了针状铁素体的不良影响。另一些人指出切变机制使针状铁素体中有较高密度的位错和较细的亚结构,提高了钢的机械性能。本文根据对裂纹扩展行为的观察,探讨铁素体影响钢的机械性能的原因。 本实验采用25铸钢作试样,其化学成分(wt-%)为:C 0.28,Si 0.37,Mn 0.61,S","authors":[{"authorName":"刘继恒","id":"c3179369-e2c8-4945-954a-577a2237d0b3","originalAuthorName":"刘继恒"},{"authorName":"赵明","id":"de9e536d-6d85-4db6-b708-3f9966be2b8b","originalAuthorName":"赵明"},{"authorName":"钱得荣","id":"e4a6f421-07f1-4fc6-8a38-4e7a34adc788","originalAuthorName":"钱得荣"},{"authorName":"阎胡成","id":"0e99f566-f6e0-4749-bcdf-6af4454a71e9","originalAuthorName":"阎胡成"}],"categoryName":"|","doi":"","fpage":"92","id":"0222ca2e-fa27-4ae4-8bda-fea34ba27e9c","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1986_5_5","title":"魏氏组织铁素体的亚结构及其对裂纹扩展的影响","volume":"22","year":"1986"},{"abstractinfo":"以提高魏氏体组织Ti60合金的拉伸强度与塑性为目标,研究固溶与时效处理对Ti60合金组织与性能演变的影响规律,并优化热处理参数.结果表明,初始魏氏组织晶粒较为粗大,经过固溶与时效处理后,晶粒明显减小,层片状α相明显减少.初始魏氏组织Ti60合金抗拉强度为850 MPa,伸长率为0.9%,1000℃固溶处理后,Ti60合金的抗拉强度达到1100 MPa,伸长率为3.7%.1000℃固溶+600℃8h时效处理后,抗拉强度达到1200 MPa,伸长率为3.3%.随固溶温度提高,其硬度与抗拉强度增加,伸长率降低.随时效时间延长,硬度先增大后减小.经1050℃固溶+600℃8 h时效处理后Ti60合金具有最大硬度值509 HV.","authors":[{"authorName":"戎旭东","id":"00e2c6cf-8ebd-4236-bb60-c083bcd4eb99","originalAuthorName":"戎旭东"},{"authorName":"黄陆军","id":"794ed4ef-eed8-4475-b58e-a300cf622c81","originalAuthorName":"黄陆军"},{"authorName":"王博","id":"7040e675-9c80-483b-af2f-2cb4474fc96e","originalAuthorName":"王博"},{"authorName":"唐骜","id":"6d8ec4ba-b4c6-41d1-b85b-b76b9864123e","originalAuthorName":"唐骜"},{"authorName":"耿林","id":"b9f5abbc-1007-4ee0-9971-8866850ef17c","originalAuthorName":"耿林"}],"doi":"","fpage":"39","id":"b48c7721-ea64-499f-a5fe-b3aac071a8f2","issue":"10","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"64128791-9e51-4d68-abb3-3c2c66d73ea4","keyword":"Ti60合金","originalKeyword":"Ti60合金"},{"id":"772dbb5f-8b5d-4de4-be64-5bc34e5d0365","keyword":"热处理","originalKeyword":"热处理"},{"id":"32e68aef-3437-4179-b2cc-2cf021e87867","keyword":"魏氏体组织","originalKeyword":"魏氏体组织"},{"id":"d0ce6237-e6e6-485d-bee5-9d03e6161a24","keyword":"拉伸性能","originalKeyword":"拉伸性能"}],"language":"zh","publisherId":"jsrclxb201510007","title":"热处理对魏氏组织Ti60合金组织与性能的影响","volume":"36","year":"2015"},{"abstractinfo":"以三种低碳合金钢的粗大魏氏组织为原始组织,分别以慢速、中速进行奥氏体化加热.晶粒度测试表明:慢速加热条件下出现组织遗传现象,中速加热时可细化晶粒.慢速加热奥氏体化过程中,观察到球状奥氏体和针状奥氏体.","authors":[{"authorName":"李智超","id":"e73b2b47-9e17-4dfd-814f-921ac81a4441","originalAuthorName":"李智超"},{"authorName":"马栓柱","id":"8fbbbb83-2208-4b2b-98ca-78e6a7444927","originalAuthorName":"马栓柱"},{"authorName":"杜素梅","id":"8716631a-5b5e-4bc5-9268-4301ce0b1092","originalAuthorName":"杜素梅"}],"doi":"10.3969/j.issn.1004-244X.2004.02.004","fpage":"12","id":"44de1e41-6719-4ef5-9b29-2e4baa38f234","issue":"2","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"caeb73e3-44fc-4e74-9e2e-eb59a9634085","keyword":"魏氏组织","originalKeyword":"魏氏组织"},{"id":"194384c6-f80f-4ba3-8dc6-c16746fda416","keyword":"组织遗传现象","originalKeyword":"组织遗传现象"},{"id":"68430359-742b-4a37-8a9c-2f98068df413","keyword":"针状奥氏体","originalKeyword":"针状奥氏体"}],"language":"zh","publisherId":"bqclkxygc200402004","title":"亚共析钢魏氏组织的组织遗传现象研究","volume":"27","year":"2004"},{"abstractinfo":"介绍了获得满足△g平行法则的位向关系、惯习面、正空赣 倒空间准不变应变线的计算方法, 解释了高锰钢中先共析魏氏组织渗大体在奥氏体晶内析出时的Pitsch和T-H的位向关系惯习面上的晶格匹配示意图.","authors":[{"authorName":"叶飞","id":"9bf1714f-eb82-4ba8-a310-12d4729a8645","originalAuthorName":"叶飞"},{"authorName":"张文征","id":"b91e893d-03d4-4e75-90c5-8910ae5b544a","originalAuthorName":"张文征"}],"categoryName":"|","doi":"","fpage":"673","id":"db8b265d-8c1c-45b7-8ada-62b2df3930cb","issue":"7","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"905f4013-0f27-43ba-b3bb-f081a00a388d","keyword":"△g平行法则","originalKeyword":"△g平行法则"},{"id":"62beb1ec-87d8-4f44-bca4-8c280c40d872","keyword":"null","originalKeyword":"null"},{"id":"e668e672-ea12-4e19-b86e-ce09d4353819","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2000_7_15","title":"魏氏组织渗碳体与奥氏体的Pitsch和T—H位向关系","volume":"36","year":"2000"},{"abstractinfo":"采用XRD、XPS和EPMA对中原油田文23-1、23-8气井油管腐蚀产物和管材进行分析,并试验了碳钢在CO_2介质中的腐蚀。研究结果表明,天然气中的CO_2及凝析水是气井腐蚀的主要原因。管材的非金属夹杂物(MnS、Al_2O_3)含量超标,是加速油管在CO_2环境中局部腐蚀穿孔破坏的另一原因。还探索了应用缓蚀剂防止气井CO_2腐蚀的可能性。","authors":[{"authorName":"郑家燊","id":"4aa259a3-9890-4b94-9b92-98f14b4e4f42","originalAuthorName":"郑家燊"},{"authorName":"傅朝阳","id":"a1cacedc-6258-4398-b16d-88cd84d16bb2","originalAuthorName":"傅朝阳"},{"authorName":"刘小武","id":"bf9d6195-ac31-4120-af98-9fe37c032278","originalAuthorName":"刘小武"},{"authorName":"彭芳明","id":"b12594db-16cd-4fed-acee-6a3b80c2e3e0","originalAuthorName":"彭芳明"},{"authorName":"黄先球","id":"81f57758-cf1b-4278-85f5-8487745c85f5","originalAuthorName":"黄先球"},{"authorName":"赵景茂","id":"2585fd88-4683-4422-a42d-a7e16622f802","originalAuthorName":"赵景茂"},{"authorName":"吴灿奇","id":"f5df895d-4271-4238-9ffd-b90f59bcfea3","originalAuthorName":"吴灿奇"},{"authorName":"徐卫东","id":"d818fdc7-f940-4272-876f-da920464a5be","originalAuthorName":"徐卫东"},{"authorName":"王选奎","id":"0e7fcc50-e2ce-4b16-b99e-966d1599adb8","originalAuthorName":"王选奎"}],"categoryName":"|","doi":"","fpage":"227","id":"0d85a2b4-88c6-4d26-9da8-44ae165c2bb0","issue":"3","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"e9abd684-3d59-4d32-afed-0dc9a6ebb526","keyword":"气井","originalKeyword":"气井"},{"id":"419b9942-a4fd-4ee8-a6d7-8dc4eefbc226","keyword":" Oil pipe corrosion","originalKeyword":" Oil pipe corrosion"},{"id":"feeaf218-889a-414d-b05a-0280637a071b","keyword":" Failure analysis","originalKeyword":" Failure analysis"},{"id":"fa46cf1b-a087-49db-976c-f2d91ed2912a","keyword":" Inhibitor","originalKeyword":" Inhibitor"}],"language":"zh","publisherId":"1005-4537_1998_3_5","title":"中原油田文23气田气井腐蚀原因分析","volume":"18","year":"1998"}],"totalpage":32,"totalrecord":320}