欢迎登录材料期刊网

材料期刊网

高级检索

利用平面波展开法计算了类正方阿基米德格子水/水银声子晶体能带结构.结果表明:与正方晶格水/水银声子晶体对比,单胞含有4个“原子”类正方阿基米德格子声子晶体存在各向同性带隙和高频带隙;在低频范围内,讨论归一化半径对类正方阿基米德格子和正方晶格水/水银声子晶体带隙相对宽度的影响,并比较它们带隙相对宽度,选择合适归一化半径值,这些类型声子晶体能够得到最宽的带隙.

参考文献

[1] Kushwaha M S;Halevi P;Dobrzynski L;Djafari-Rouhani B .Acoustic Band Structure of Periodic Elastic Composites[J].Physical Review Letters,1993,71(13):2022-2025.
[2] 高斌,于桂兰,李建宝.流固耦合二维声子晶体的数值模拟和实验研究[J].人工晶体学报,2010(03):680-686.
[3] Kushwaha M S;Halevi P;Martinez G et al.Theory of Acoustic Band Structure of Periodic Elastic Composites[J].Physical Review B,1994,49(04):2313-2322.
[4] Kushwaha MS .Stop-bands for periodic metallic rods: Sculptures that can filter the noise[J].Applied physics letters,1997(24):3218-3220.
[5] A. Sukhovich;B. Merheb;K. Muralidharan;J. O. Vasseur;Y. Pennec;P. A. Deymier;J. H. Page .Experimental and Theoretical Evidence for Subwavelength Imaging in Phononic Crystals[J].Physical review letters,2009(15):136-139.
[6] T. Elnady;A. Elsabbagh;W. Akl;O. Mohamady;V. M. Garcia-Chocano;D. Torrent;F. Cervera;J. Sanchez-Dehesa .Quenching of acoustic bandgaps by flow noise[J].Applied physics letters,2009(13):134104-1-134104-3-0.
[7] B. Liang;X. S. Guo;J. Tu .An acoustic rectifier[J].Nature materials,2010(12):989-992.
[8] Zhou X Z;Wang Y S;Zhang C Z .Effect of Material Parameters on Elastic Band Gaps of Two-dimensional Solid Phononic Crystals[J].Journal of Applied Physics,2009,106(01):014903.
[9] Kushwaha M S;Halevi P .Giant Acoustic Stop Bands in Two-dimensional Periodic Arrays of Liquid Cylinder[J].Applied Physics Letters,1996,69(01):31-33.
[10] Kushwaha MS.;Djafari-Rouhani B. .Giant sonic stop bands in two-dimensional periodic system of fluids[J].Journal of Applied Physics,1998(9):4677-4683.
[11] Vasseur J O;Djafari Rouhani B;Dobrzynski L et al.Acoustic Band Gaps in Fibre Composite Materials of Boron Nitride Structure[J].Journal of Physics:Condensed Matter,1997,9(35):7327-7341.
[12] 董华锋,吴福根,牟中飞,钟会林.二维复式声子晶体中基元配置对声学能带结构的影响[J].物理学报,2010(02):754-758.
[13] Xu ZL;Wu F;Mu ZF;Zhang X;Yao YW .Larger acoustic band gaps obtained by configurations of rods in two-dimensional phononic crystals[J].Journal of Physics, D. Applied Physics: A Europhysics Journal,2007(18):5584-5587.
[14] KeplerJ.HarmonicesMundi[M].Linz,1619:1-152.
[15] Shephard G B.Tilings and Patterns[M].Freeman,New York,1987:56-121.
[16] Ueda K;Dotera T;Gemma T .Photonic band structure calculations of two-dimensional Archimedean tiling patterns[J].Physical review, B. Condensed matter and materials physics,2007(19):5122-1-5122-11-0.
[17] JovanovicD;Gajic R;Hingerl K .Refraction and Band Isotropy in 2D Square-like Archimedean Photonic Crystal Lattices[J].Optics Express,2008,16(06):4048-4058.
[18] Charles M. Reinke;M. F. Su;R. H. Olsson;I. El-Kady .Realization of optimal bandgaps in solid-solid, solid-air, and hybrid solid-air-solid phononic crystal slabs[J].Applied physics letters,2011(6):061912-1-061912-3.
[19] Kittel C.Introduction to Solid State Physics[M].John Wiley and Sons,Inc,1996:19-36.
[20] Goodman J W.Introduction to Fourier Optics[M].McGraw-Hill,Inc,2002:4-26.
[21] Carsten Rockstuhl;Ulf Peschel;Falk Lederer .Correlation between single-cylinder properties and bandgap formation in photonic structures[J].Optics Letters,2006(11):1741-1743.
[22] Sigalas M;Economou E N .Band Structure of Elastic Waves in Two Dimensional Systems[J].Solid State Communications,1993,86(03):141-143.
[23] Pavel N. Dyachenko;Nataliya D. Kundikova;Yuri V. Miklyaev .Band structure of a photonic crystal with the clathrate Si-34 lattice[J].Physical review, B. Condensed matter and materials physics,2009(23):233102:1-233102:4.
[24] Kaya, O.A.;Cicek, A.;Yilmaz, M.;Ulug, B. .Superprism effect in a deformed triangular sonic crystal[J].Journal of Physics, D. Applied Physics: A Europhysics Journal,2011(32):325401-1-325401-7.
[25] Xue-Feng Li;Xu Ni;Liang Feng;Ming-Hui Lu;Cheng He;Yan-Feng Chen .Tunable Unidirectional Sound Propagation through a Sonic-Crystal-Based Acoustic Diode[J].Physical review letters,2011(8):84301.1-84301.4.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%