欢迎登录材料期刊网

材料期刊网

高级检索

数值模拟了C-H-O和C-H-N体系的气相化学,构建了含氧和含氮气源化学气相沉积金刚石膜的三元相图,探讨了加氧和加氮影响金刚石膜生长的途径.结果表明,甲基是金刚石生长主要的前驱基团,乙炔导致非金刚石碳沉积,原子氢刻蚀非金刚石碳.通过气相反应改变这些基团的浓度是加氧的一个重要作用途径,而加氮在改变这些基团浓度的同时,CN等含氮基团还强烈地参与了金刚石膜成核和生长的表面过程.

Gas phase chemistry in C-H-O and C-H-N systems was simulated. Phase diagrams for chemical vapor
deposition diamond films with oxygen-containing and nitrogen-containing feed gases were successfully constructed. The influences of oxygen and
nitrogen addition on diamond growth were also discussed. It is shown methyl is the dominant diamond growth precursor, acetylene contributes to
non-diamond carbon deposition and atomic hydrogen etches non-diamond carbon. Oxygen addition varies the concentrations of these radicals, which influences
diamond growth. Nitrogen addition varies their concentrations as well as produces nitrogen-containing radicals such as CN, which participate in
surface chemistry in diamond nucleation and growth.

参考文献

[1] Lee S T, Lin Z D, Jiang X. Mat. Sci. Eng. R, 1999, 25 (4): 123--154.
[2] Li D M, Hernberg R, Mantyla T. Diamond Relat. Mater., 1998, 7: 188--192.
[3] Bachmann P K, Leers D, Lydtin H. Diamond Relat. Mater., 1991, 1: 1--12 and references therein.
[4] 李灿华, 廖源, 常超, 等(LI Can-Hua, et al). 无机材料学报(Journal of Inorganic Materials), 2001, 16 (1): 81--86.
[5] Cassdiy W D, Evans E A, Wang Y, et al. Mat. Res. Soc. Symp. Proc., 1994, 339: 285--290.
[6] Marinelli M, Milani E, Montuori M, et al. J. Appl. Phys., 1994, 76 (10): 5702.
[7] Bachmann P K, Hagemann H J, Lade H, et al. Proceedings of the NIRIM International Symposium on Advanced Materials ’94. 115--120.
[8] Ford I J. J. Phys. D: Appl. Phys., 1996, 29: 2229--2234.
[9] Wang J T, Zhang D W, Ding S J, et al. Calphad, 2000, 24 (4): 427--434.
[10] 万永中, 张志明, 沈荷生, 等(WAN Yong-Zhong, et al). 无机材料学报(Journal of Inorganic Materials), 1999, 14 (6): 840--846.
[11] Smith G P, Golden D M, Frenklach M, et al. GRI-Mech3.0.
[12] 戚学贵, 常超, 陈则韶, 等(QIi Xue-Gui, et al). 无机材料学报(Journal of Inorganic Materials), 2003, 18 (1): 200--206.
[13] Lee S S, Minsek D W, Vestyck D J, et al. Science, 1994, 263: 1596--1598.
[14] Chu C J, D’Evelyn M P, Hauge R H, et al. J. Appl. Phys., 1991, 70 (3): 1695--1705.
[15] 刘靖尧, 丁益宏, 刘波, 等(LIU Jing-Yao, et al). 高等学校化学学报(Chem. J. Chin. Univ.), 2000, 21 (3): 444--447.
[16] McMaster M C, Hsu W L, Coltrin M E, et al. J. Appl. Phys., 1994, 76 (11): 7567--7577.
[17] Tsang R S, Rego C A, May P W, et al. Diamond Relat. Mater., 1997, 6: 247--254.
[18] Zhang G F, Geng D S, Yang Z J. Surf. Coat. Tech., 1999, 122: 268--272.
[19] Zhou D, Krauss A R, Qin L C, et al. J. Appl. Phys., 1997, 82 (9): 4546--4550.
[20] Xu N S, Chen J, Deng S Z, et al. J. Phys. D: Appl. Phys., 2000, 33: 1572--1575.
[21] Musale D V, Sainkar S R, Kshirsagar S T. Diamond Relat. Mater., 2002, 11: 75--86.
[22] Zhang Q, Yoon S F, Ahn J, et al. Microelectr. J., 1998, 29: 875--879.
[23] Badzian A, Badzian T, Lee S T. Appl. Phys. Lett., 1993, 62 (26): 3432--3434.
[24] Sowers A T, Ward B L, English S L, et al. J. Appl. Phys., 1999, 86 (7): 3973--3982.
[25] Mitsuda Y, Kobayashi K. Thin Solid Films, 1999, 345: 55--59.
[26] Clay K J, Speakman S P, Amaratunga G A J, et al. J. Appl. Phys., 1996, 79 (9): 7227--7233.
[28] Afzal A, Rego C A, Ahmed W, et al. Diamond Relat. Mater., 1998, 7: 1033--1038.
[29] Haubner R, Bohr S, Lux B. Diamond Relat. Mater., 1999, 8: 171--178.
[30] Vandevelde T, Nesladek M, Quaeyhaegens C, et al. Thin Solid Films, 1997, 308-309: 154--158.
[31] Elmazria O, Bougdira J, Chatei H, et al. Thin Solid Films, 2000, 374: 27--33.
[32] Ayres V M, Bieler T R, Kanatzidis M G, et al. Diamond Relat. Mater., 2000, 9: 236--240.
[33] Bohr S, Haubner R, Lux B. Appl. Phys. Lett., 1996, 68 (8): 1075--1077.
[34] Shang N G, Lee C S, Lin Z D, et al. Diamond Relat. Mater., 2000, 9: 1388--1392.
[35] Yu Z, Karlsson U, Flodstrom A. Thin Solid Films, 1999, 342: 74--82.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%