欢迎登录材料期刊网

材料期刊网

高级检索

采用案例推理技术研究了热轧带钢层流冷却数学模型中的长期自学习系数的确定方法。基于现场大量生产数据,从如何有效利用经验知识入手,对层流冷却工况和所采用的自学习系数进行案例构造,采用绝对过滤和相对过滤方法进行案例检索,根据当前工况和历史案例工况的相似度决定是否进行自学习系数的重用或修正。现场实际应用表明:对已轧过的钢种规格带钢,该方法能有效地避免再次轧制时带钢头部过冷现象,能显著提高带钢头部卷取温度的设定精度,能有效地提高换规格轧制时带钢头部卷取温度的控制精度。

Decision method for long-term coefficient used for coiling temperature control(CTC) model were studied by case-based reasoning(CBR) technology which experience and knowledge can be effectively reused based on mass production data. In the course of the study, firstly a lot of case consisted of typical laminar flow cooling conditions and self-learning coefficient adopted by CTC model were constructed, secondly case retrieval was done with the absolute and/or relative methods of filtering, then self-leaning coefficient belong to related case can be directly reused or modified according to the similarity between current conditions and historical case conditions, finally the new self-leaning coefficient was adopted into CTC model. Application show that this method can effectively avoid strip head end much more lower temperature than strip body, and can significantly improve the precision of coiling temperature control for strip head end, especially when rolling conditions or specifications changed.

参考文献

[1]
[2] 丁敬国,胡贤磊,焦景民等.基于粗糙集的关联规则数据挖掘在层流冷却中的应用[J].东北大学学报(自然科学版),2007,28(11):1583-1585.
[2]焦 隽.2050mm热轧层流冷却温度计算模型的研究及改造[C],2005中国钢铁年会论文集:401-405.
[3]宋勇,苏岚,荆丰伟.日照1580mm热连轧机层流冷却控制系统[J].冶金自动化,2009,33(2):24-27.
[4]付培众,牛庆林. 层流冷却控制模型在安钢炉卷轧机的应用及改进[J].冶金自动化,2008,3(32):43-46.
[5]谭明皓,柴天佑.基于案例推理的层流冷却过程建模[J].控制理论与应用,2005,22(2):248-253.
[6]王津津,田卫东.案例推理中一种组合权重的方法[J].微计算机信息,2010,26(11-3):254-256.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%