材料导报, 2010, 24(5): 40-44.
低温共烧陶瓷技术(LTCC)与低介电常数微波介质陶瓷
李冉 1, , 傅仁利 2, , 何洪 3, , 宋秀峰 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":4,"startPagecode":1},"records":[{"abstractinfo":"对板坯角横裂纹在轧后钢板边部的延展行为进行了实验室和工业试验研究.得出:随着钢板轧制厚度的增加,铸坯角部横裂纹沿宽度方向延展有加重的趋势;轧制规格相对较薄的钢板的裂纹极微小,有被\"撵平\"的趋势;毛边钢板的安全切边量为35 mm.","authors":[{"authorName":"刘洋","id":"e2954ffe-06c1-4afa-8275-189894168682","originalAuthorName":"刘洋"},{"authorName":"顾林豪","id":"4ca6a78c-dd7e-4125-8d92-ce15507b2a5e","originalAuthorName":"顾林豪"},{"authorName":"李战军","id":"e4321d82-f21e-40d3-bdad-672ea542e4d1","originalAuthorName":"李战军"},{"authorName":"王文军","id":"672f9c5b-15b1-4146-b326-9f400c506dc0","originalAuthorName":"王文军"},{"authorName":"吕延春","id":"e98a1cad-214b-4135-acf7-19ff936ae97a","originalAuthorName":"吕延春"},{"authorName":"王海宝","id":"0f35eec1-ad7f-464b-8285-f5a8930fbfa3","originalAuthorName":"王海宝"},{"authorName":"姜中行","id":"0b17ee9b-d7a5-4cb2-8097-6c022cfa03ca","originalAuthorName":"姜中行"}],"doi":"","fpage":"68","id":"b8e2e411-a5d8-4033-a0ff-fc16df8c3663","issue":"3","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"8bbaac50-06df-4b02-83e9-ebbec1b43ce5","keyword":"板坯","originalKeyword":"板坯"},{"id":"8260a77e-6c5e-40fa-9f00-7bdc19e082b9","keyword":"角横裂纹","originalKeyword":"角横裂纹"},{"id":"3585a1d1-e70c-40fb-9fcd-9a9b69bebbea","keyword":"切边量","originalKeyword":"切边量"},{"id":"1f88d82c-f4b7-4ef1-ae97-812cc7dbffd7","keyword":"钢板边裂","originalKeyword":"钢板边裂"}],"language":"zh","publisherId":"gtft201003015","title":"板坯角横裂纹在轧后钢板边部的延展行为","volume":"31","year":"2010"},{"abstractinfo":"轧后采用空冷、加速冷却和两段式(前段超快冷+后段加速冷却,简称超快冷)三种冷却模式进行控制冷却,研究了冷却工艺对海洋平台用钢组织性能的影响。结果表明,空冷工艺所得试验钢的组织为多边形铁素体和马氏体,铁素体晶粒内位错密度较低,析出相数量较少,尺寸粗大;加速冷却所得试验钢的显微组织由多边形铁素体、针状铁素体和细小弥散的M/A岛组成,铁素体晶粒较空冷工艺明显细化,位错密度提高,析出物细小弥散;两段式所得试验钢的相变组织主要为针状铁素体,板条明显细化,位错密度进一步提高,析出物细小而数量降低。三种冷却工艺中,空冷工艺所得试验钢的屈强比最低,塑性最好;加速冷却工艺所得试验钢的低温韧性最佳;而采用两段式冷却工艺所得试验钢抗拉强度最高。","authors":[{"authorName":"狄国标","id":"cd98a42e-314b-4c35-bf1b-485e6c14cb09","originalAuthorName":"狄国标"},{"authorName":"周砚磊","id":"2a83b121-cfb3-46dd-b5fc-4749fdf17373","originalAuthorName":"周砚磊"},{"authorName":"姜中行","id":"2a362ef5-c06e-4bd2-a082-649130e51982","originalAuthorName":"姜中行"},{"authorName":"刘振宇","id":"aa2b98e5-559f-44bd-b9ad-2c8ba1901cfc","originalAuthorName":"刘振宇"},{"authorName":"麻庆申","id":"bbee4185-ddb7-4428-a961-26d95a633ffc","originalAuthorName":"麻庆申"}],"doi":"","fpage":"56","id":"0f0faade-0558-4174-a8a3-029a9ff89515","issue":"10","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"5c144804-2498-4b91-8e3c-8e8b1ee1fbcd","keyword":"低温韧性","originalKeyword":"低温韧性"},{"id":"02f73b35-daa2-46eb-9de7-d95d4624fda5","keyword":"冷却工艺","originalKeyword":"冷却工艺"},{"id":"294cd164-df7e-4cee-8a20-f02e73b8470a","keyword":"屈强比","originalKeyword":"屈强比"},{"id":"3c077906-3c2f-411d-8b05-be0212c4d54a","keyword":"M/A岛","originalKeyword":"M/A岛"}],"language":"zh","publisherId":"jsrclxb201110011","title":"轧后冷却工艺对海洋平台用钢组织性能的影响","volume":"32","year":"2011"},{"abstractinfo":"对不同成分试验钢采用了TMCP和离线调质处理2种工艺制度生产储油罐用高强度钢,并对钢板进行常规拉伸实验和冲击实验,分析其组织结构和断口形貌。最终确定大型原油储罐用高强度钢板的化学成分,在此基础上建议采用TMCP和离线调质处理2种工艺来生产大型原油储罐用高强度钢板。","authors":[{"authorName":"肖桂枝","id":"bca7d5a6-9a9f-4cd6-8bcf-db6a73985cc1","originalAuthorName":"肖桂枝"},{"authorName":"朱伏先","id":"c4958979-7108-469b-8536-cd80d1408695","originalAuthorName":"朱伏先"},{"authorName":"邸洪双","id":"f78266be-37e0-4571-916b-9917bf5a1292","originalAuthorName":"邸洪双"},{"authorName":"金茹","id":"b5a7e95a-ec31-44e7-a40f-8348726999bf","originalAuthorName":"金茹"},{"authorName":"姜中行","id":"9b58cebc-0217-4f2c-b4b5-e05c96776188","originalAuthorName":"姜中行"}],"categoryName":"|","doi":"","fpage":"55","id":"6444058b-4ce0-4a65-b41f-fd4d47fbcf4e","issue":"11","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"837fae73-99bb-4dd1-8635-06841f4cf219","keyword":"石油储罐;高强度钢;调质处理;力学性能","originalKeyword":"石油储罐;高强度钢;调质处理;力学性能"}],"language":"zh","publisherId":"1001-0963_2008_11_9","title":"610 MPa级大型石油储罐用高强度钢板的开发","volume":"20","year":"2008"},{"abstractinfo":"研究了低合金高强度调质钢的轧制方式及轧后冷速对调质后微观组织及力学性能的影响.结果表明:在试验条件下,试验钢采用不同轧制方式及冷速获得不同淬火加热前的初始组织及力学性能,但调质后却具有相同的微观组织和力学性能.建议低合金高强度调质钢采用一阶段的轧制方式,终轧温度应高于奥氏体部分再结晶区的上限温度,轧后采用适宜的冷速(4~15℃/s)进行加速冷却.以此工艺调质后的试验钢具有较高的均匀性,与现行TMCP工艺相比,强塑性和强韧性更为优异.","authors":[{"authorName":"陈炳张","id":"617bff90-9d40-40a5-b842-8471da531149","originalAuthorName":"陈炳张"},{"authorName":"朱伏先","id":"fe52e19d-c8c1-4e78-ace6-2daf7500f221","originalAuthorName":"朱伏先"},{"authorName":"陈永利","id":"330bdad0-9c04-4e4e-8b12-cf44b934a343","originalAuthorName":"陈永利"},{"authorName":"金茹","id":"a22e4591-6abf-4253-8d15-240421edecdd","originalAuthorName":"金茹"},{"authorName":"姜中行","id":"c644c371-241f-467d-b4ba-5027342f44f2","originalAuthorName":"姜中行"}],"doi":"","fpage":"88","id":"8e7de8d4-df46-4f0e-b2e6-a085c29ee826","issue":"6","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"7e50445b-a34e-4107-81e9-eb595a594bf1","keyword":"低合金高强度调质钢","originalKeyword":"低合金高强度调质钢"},{"id":"9d0a47f5-8f08-4fb6-ad52-40c4d485746b","keyword":"控轧控冷","originalKeyword":"控轧控冷"},{"id":"ad89f1b9-10fe-4213-b6a2-09b8eef78c02","keyword":"轧制方式","originalKeyword":"轧制方式"},{"id":"967ae9b8-f5d7-404f-a1ae-86c8eec81e04","keyword":"冷却速度","originalKeyword":"冷却速度"},{"id":"2e7137a8-4bd3-4a3c-b9cc-d8bd6e9de3d4","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gt201006019","title":"低合金高强度调质钢控轧控冷工艺优化","volume":"45","year":"2010"},{"abstractinfo":"对不同成分试验钢采用了TMCP和离线调质处理2种工艺制度生产储油罐用高强度钢,并对钢板进行常规拉伸实验和冲击实验,分析其组织结构和断口形貌.最终确定大型原油储罐用高强度钢板的化学成分,在此基础上建议采用TMCP和离线调质处理2种工艺来生产大型原油储罐用高强度钢板.","authors":[{"authorName":"肖桂枝","id":"71cfcd12-aa4a-4e73-97bc-61a81380b154","originalAuthorName":"肖桂枝"},{"authorName":"朱伏先","id":"a070c734-57d1-4016-bce5-c71712390dbe","originalAuthorName":"朱伏先"},{"authorName":"邸洪双","id":"7c3664ca-a1ad-41cc-a74d-867ede09051e","originalAuthorName":"邸洪双"},{"authorName":"金茹","id":"0ffefe6f-0ab3-41d3-a1c9-b272432c32a6","originalAuthorName":"金茹"},{"authorName":"姜中行","id":"683cc063-0060-4eef-8935-c1df2fe1e58b","originalAuthorName":"姜中行"}],"doi":"","fpage":"55","id":"a78ca39f-9865-43d8-bad8-8d059df91bca","issue":"11","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"cd1bc2c7-40fb-4e07-ba6f-aaa6caf0c48e","keyword":"石油储罐","originalKeyword":"石油储罐"},{"id":"a68e769a-0ca6-42a1-8f81-50e01cb548e9","keyword":"高强度钢","originalKeyword":"高强度钢"},{"id":"9e39c91d-a0b9-48c6-b8aa-aa22aceaf7de","keyword":"调质处理","originalKeyword":"调质处理"},{"id":"e2131e5e-5a65-4e72-87b0-6cc5b87939e1","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gtyjxb200811013","title":"610 MPa级大型石油储罐用高强度钢板的开发","volume":"20","year":"2008"},{"abstractinfo":"研究了空冷条件下,海洋平台用钢中的不同镍含量(WN=0.2%,0.53%,0.8%、1.11%)对其显微组织及力学性能的影响。结果表明,当镍含量较低时,所得显微组织为铁素体和马氏体,晶粒尺寸粗大;随着镍含量的增加,多边形铁素体量降低,针状铁素体量提高,M/A岛更加细小弥散,析出相由相间析出向均匀弥散析出转变,析出粒子尺寸降低;试验钢的屈服强度和抗拉强度随镍含量增加而单调增加,伸长率先增加后降低,而韧脆转变温度先降低后增加,当WN=0.5%~0.83%时,试验钢具有最佳的低温韧性。","authors":[{"authorName":"狄国标","id":"09f93eec-59dd-45ca-9c67-a7a862b4bae0","originalAuthorName":"狄国标"},{"authorName":"周砚磊","id":"7ca15b9f-f533-4adc-a8fe-5d64a368262d","originalAuthorName":"周砚磊"},{"authorName":"麻庆申","id":"810676e7-2ee3-49af-8d0d-65f6cc0107d6","originalAuthorName":"麻庆申"},{"authorName":"姜中行","id":"12ff6740-5daa-451c-80e3-9dbb7ff559e3","originalAuthorName":"姜中行"},{"authorName":"刘振宇","id":"0cd859e8-3625-42b8-9670-ffdcaf0c77e5","originalAuthorName":"刘振宇"}],"doi":"","fpage":"52","id":"c49464af-924d-4701-8548-1f8f5d602399","issue":"6","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"57300164-e3c5-4ef9-bcc1-1616cd153d59","keyword":"海洋平台钢","originalKeyword":"海洋平台钢"},{"id":"1add91ab-1a0e-44f7-bb45-adf71cb60af9","keyword":"析出","originalKeyword":"析出"},{"id":"a62c2e1a-15e3-47f7-a429-398844e28a8e","keyword":"M/A岛","originalKeyword":"M/A岛"}],"language":"zh","publisherId":"gtyjxb201206011","title":"镍含量对海洋平台用钢组织性能的影响","volume":"24","year":"2012"},{"abstractinfo":"采用热模拟试验,结合工业热轧过程,对厚度27.5mm高强度、高韧性X80管线钢板进行了研究,包括化学成分设计、板坯加热制度、控制轧制和控制冷却工艺。研究结果表明:采用超低碳设计,结合发挥显著作用的合金元素Mo和Cr等来弥补中厚板心部冷却不足,可以促进全壁厚匀质贝氏体相变组织形成;通过控制板坯加热温度,可以有效抑制原始奥氏体晶粒粗化;在控轧阶段,通过控制轧制压下量充分细化奥氏体晶粒尺寸;最终通过适当的加速冷却工艺,获得一个理想的微观组织结构。通过优化控制轧制工艺获得的微观组织保证了产品的低温韧性能力。","authors":[{"authorName":"李少坡","id":"c9ad3db4-1c2a-4487-8635-1cdae960d149","originalAuthorName":"李少坡"},{"authorName":"姜中行","id":"0c223592-7989-4569-9b44-a8bcffdd9344","originalAuthorName":"姜中行"},{"authorName":"李永东","id":"17a2eddf-7269-4059-8a1c-e274910d4a00","originalAuthorName":"李永东"},{"authorName":"许晓东","id":"31657405-0be6-4070-93c7-a344289e6a9f","originalAuthorName":"许晓东"},{"authorName":"白学军","id":"2b492ec8-7b62-4336-bde6-6b4b46af1925","originalAuthorName":"白学军"}],"doi":"","fpage":"55","id":"e38b0827-9e55-45ec-838a-6500b75fb304","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"c8a7ccf7-b266-48d7-8386-7535bccfcf8a","keyword":"厚壁","originalKeyword":"厚壁"},{"id":"6558c00d-bccd-4025-9b90-4ae3e32330ee","keyword":"X80","originalKeyword":"X80"},{"id":"22f6cf0b-aacd-4243-ad21-5a4b57130305","keyword":"低温韧性","originalKeyword":"低温韧性"},{"id":"7bc06f54-a967-4427-b847-2781a629bbaa","keyword":"超低碳贝氏体","originalKeyword":"超低碳贝氏体"}],"language":"zh","publisherId":"gt201204014","title":"超低碳贝氏体厚壁X80宽厚板的研发","volume":"47","year":"2012"},{"abstractinfo":"采用直接淬火+回火和离线淬火+回火两种调质工艺试制了SPV490Q大型石油储罐用高强钢.研究了淬火工艺对其力学性能和显微组织的影响,分析了经640℃回火后,钢的组织与性能的特征.结果表明,采用直接淬火加回火工艺,钢板具有更好的强韧匹配及耐回火性能.","authors":[{"authorName":"肖桂枝","id":"8d90a1c4-0c46-4eca-a7ab-4d08853c89b6","originalAuthorName":"肖桂枝"},{"authorName":"朱伏先","id":"16a69968-e22c-4c21-a0b4-b1b0fcb43948","originalAuthorName":"朱伏先"},{"authorName":"邸洪双","id":"d5752f5e-cc01-4590-adb4-8ad166fd5c77","originalAuthorName":"邸洪双"},{"authorName":"金茹","id":"2f05c490-13cf-47be-8acd-b3b97381d61c","originalAuthorName":"金茹"},{"authorName":"姜中行","id":"5cc1cb6d-fb55-4e47-80e5-4b5e69b3a329","originalAuthorName":"姜中行"}],"doi":"","fpage":"66","id":"fec2b9a8-8c1f-408e-8d86-6c192a4049e2","issue":"7","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"7fbd76b6-6cce-4d58-bcc0-b0605db9e4db","keyword":"直接淬火","originalKeyword":"直接淬火"},{"id":"ad88bbab-423f-40ce-b5eb-1ea345384ca4","keyword":"再加热淬火","originalKeyword":"再加热淬火"},{"id":"9ebd48ad-509b-41a0-9807-ae0427dea37d","keyword":"回火","originalKeyword":"回火"},{"id":"03ce6431-dd40-4987-96ea-1e033eafd151","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gt200907017","title":"SPV490Q钢调质热处理工艺研究","volume":"44","year":"2009"},{"abstractinfo":"借助Gleeble-2000型热模拟试验机,研究了微合金高强度钢在热变形过程中变形阻力与变形温度、变形程度和应变速率之间的关系,并分析了加热温度对晶粒度的影响.结果表明:微合金元素的存在能显著提高钢的高温变形抗力,在道次压下量较大的降温轧制过程中,微合金元素含量越多或强度级别越高,钢对变形阻力越敏感;含微合金元素与不含微合金元素的钢种相比,其变形阻力对变形速率的敏感性略强.","authors":[{"authorName":"罗文彬","id":"feda50f8-0650-45b6-9781-c80d545070f2","originalAuthorName":"罗文彬"},{"authorName":"刘春明","id":"d44d0699-c835-4079-bcef-28295535dbee","originalAuthorName":"刘春明"},{"authorName":"姜中行","id":"51f74341-d2f0-474f-a5aa-1afb4f685a44","originalAuthorName":"姜中行"}],"doi":"10.3969/j.issn.1000-3738.2006.04.014","fpage":"46","id":"5ee7f2bd-fa12-4dc0-aeef-6cd68ba185ce","issue":"4","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"d5fe642b-dc95-489e-9a8c-1ca5e3dc4a93","keyword":"微合金高强度钢","originalKeyword":"微合金高强度钢"},{"id":"003aef39-3031-483c-b564-40dc0b54eb2e","keyword":"热轧","originalKeyword":"热轧"},{"id":"74db9890-7671-455a-8f8c-b189482c07fe","keyword":"变形阻力","originalKeyword":"变形阻力"},{"id":"bb0ae1c0-6601-4ec2-a8fa-6f73d3a78c27","keyword":"变形温度","originalKeyword":"变形温度"}],"language":"zh","publisherId":"jxgccl200604014","title":"微合金高强度钢热变形阻力试验研究","volume":"30","year":"2006"},{"abstractinfo":"用超临界CO2萃取生姜根茎中的姜油树脂,并用气相色谱-质谱联用技术对其进行了成分分析.从姜油树脂中分析出77种化合物,其中挥发油成分50种,主要是α-姜烯(22.29%)、β-倍半水芹烯(8.58%)、α-法尼烯(3.93%)、β-没药烯(3.87%)和α-姜黄烯(2.63%)等倍半萜类化合物;姜辣素成分27种,主要成分为6-姜酚(9.38%)、6-姜烯酚(7.59%)和分析过程中由姜酚类或姜烯酚类化合物受热分解而形成的姜油酮(9.24%).在姜辣素成分中,6-异姜酚、(Z)-10-异姜烯酚和(E)-10-异姜烯酚3种化合物是新发现的未见报道的化合物.实验中对这3种新化合物进行了质谱裂解分析.","authors":[{"authorName":"战琨友","id":"18029250-7538-4dbd-a479-4a7c758cfe80","originalAuthorName":"战琨友"},{"authorName":"王超","id":"e25f333c-dd8d-45ed-9015-ba6126bcf7cd","originalAuthorName":"王超"},{"authorName":"徐坤","id":"e8424cb6-b0d4-46ed-8fa2-c673af3ec31c","originalAuthorName":"徐坤"},{"authorName":"尹洪宗","id":"ec76914e-8f6c-4f7e-afaf-bbc7cda8c69f","originalAuthorName":"尹洪宗"}],"doi":"10.3321/j.issn:1000-8713.2008.06.009","fpage":"692","id":"42c1bbc0-652a-433f-8e34-86f30b7f6523","issue":"6","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"e53773ad-891b-403b-8b22-f5b0686630e3","keyword":"超临界萃取","originalKeyword":"超临界萃取"},{"id":"286cbdc0-600d-40b3-affc-527a1b3253a4","keyword":"气相色谱-质谱联用技术","originalKeyword":"气相色谱-质谱联用技术"},{"id":"7ed48749-e650-4478-96ef-9741cba04e1c","keyword":"姜油树脂","originalKeyword":"姜油树脂"},{"id":"bf6fde50-9a7b-42f4-953e-bf1116bcbb98","keyword":"成分分析","originalKeyword":"成分分析"}],"language":"zh","publisherId":"sp200806009","title":"气相色谱-质谱技术分析姜油树脂中的挥发性及非挥发性成分","volume":"26","year":"2008"}],"totalpage":4,"totalrecord":39}