欢迎登录材料期刊网

材料期刊网

高级检索

冠状动脉支架作为经皮穿刺冠状动脉成形术中保持病变血管畅通的核心器件,其低的弹性回弹性能已作为新一代冠脉支架所应具有的重要力学特征。依据冠脉支架回弹性能的实际测试原型,建立了具有代表性的通用支架有限元模型,并利用此方法研究了冠脉支架设计参数对支架弹性回弹性能的影响。结果显示,支架波形环高度和花冠数在所有研究参数中对回弹性的影响最为显著,增加支架筋宽或者筋厚通常能够降低支架回弹率,但是,增加支架波形环高度或者波形环曲率半径通常会提高支架回弹率。此外,增加支架花冠数也会提高支架的回弹率。因此,有限元法对支架力学行为分析具有很大的帮助,为支架的临床选择及优化设计提供了重要指导。

Coronary stent is an important device used in CA), which is usually implanted to support the stenosed percutaneous transluminal coronary angloplasty (PT) artery. Low elastic recoil has become an essential lea ture of new coronary stents. The primary aim of this investigation was to investigate the effects of varying stent "design parameter" on the elastic recoil of stent by using the finite element method (FEM). The finite element model to evaluate elastic recoil of stent was set up based on the stent prototype testing. The results showed that the amplitude and the number of crowns were the dominant parameter in this study. Increasing either strut width or thickness generally decreased elastic recoil of stent. However, increasing either amplitude or radius of curvature or the number of crowns generally increased it. In conclusion, FEM could quantify some mechanical behaviors of stent and help surgeons to select stent and designers to optimize stent.

参考文献

[1] Palmaz JC .Intravascular stents in the last and the next 10 years.[J].Journal of endovascular therapy: an official journal of the International Society of Endovascular Specialists,2004(Suppl.2):II200-206.
[2] Martinez,A.W.;Chaikof,E.L. .Microfabrication and nanotechnology in stent design[J].Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology,2011(1/4):256-268.
[3] Wang Weiqiang .Finite element analysis of the mechanicalbehavior of coronary stent and its structure optimization[D].大连:大连理工大学,2005.
[4] Yamamoto Y;Brown DL;Ischinger TA;Arbab Zadeh-A;Penny WF .Effect of stent design on reduction of elastic recoil: a comparison via quantitative intravascular ultrasound.[J].Catheterization and cardiovascular interventions: Official journal of the Society for Cardiac Angiography & Interventions,1999(2):251-257.
[5] Schmitz K P;Behrend D;Behrens P et al.Comparativestudies of different designs[J].Progress in BiomedicalResearch,1999,46:52-58.
[6] Barragan P;Rieu R;Garitey V;Roquebert PO;Sainsous J;Silvestri M;Bayet G .Elastic recoil of coronary stents: a comparative analysis.[J].Catheterization and cardiovascular interventions: Official journal of the Society for Cardiac Angiography & Interventions,2000(1):112-119.
[7] 张庆宝,王伟强,齐民,梁栋科,杨大智.不同材料冠状动脉支架膨胀行为分析[J].功能材料,2007(01):130-134.
[8] Wu Wf;Gastaldi D;Yang K et al.Finite element analy-ses for design evaluation of biodegadable magnesium alloystents in arterial vessels[J].Materials Science and Engi-neering B,2011,176:1733-1740.
[9] 申祥,易红,倪中华.冠状动脉支架纵向柔顺性能有限元分析[J].功能材料,2009(03):446-449,454.
[10] Takashima K;Kitou T;Mori K;Ikeuchi K .Simulation and experimental observation of contact conditions between stents and artery models.[J].Medical engineering and physics,2007(3):326-335.
[11] Zhang Yihao;Li Hongxia;Wang Xicheng .Fatigue lifeanalysis for cardiovascular stent[J].Journal of HarbinInstitute of Technology,2011,43:86-90.
[12] Linxia Gu;Shijia Zhao;Aswini K. Muttyam;James M. Hammel .The Relation Between the Arterial Stress and Restenosis Rate After Coronary Stenting[J].Journal of Medical Devices,2010(3):031005-1-031005-7.
[13] Mori K;Saito T .Effects of stent structure on stent flexibility measurements.[J].Annals of Biomedical Engineering,2005(6):733-742.
[14] Frank A O;Walsh P W;Moore J E .Computational flu- id dynamics and stent design[J].Artificial Organs,2002,26(07):614-624.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%