采用Pechini法制备Ti/IrO2-Ta2O5纳米氧化物阳极,通过SEM、EDX、XRD、极化曲线、循环伏安、电化学阻抗谱及强化电解寿命试验等测试手段,研究了烧结温度对Ti/IrO2-Ta2O5阳极微观结构和电催化性能的影响.结果表明,阳极涂层成分分布均匀,IrO2晶粒偏析不明显;Ta在铱钽固溶体中的固溶度随烧结温度升高而增大,涂层晶粒逐渐细化.随着烧结温度的升高,阳极析氧电催化活性降低,电化学活性表面积减小;500℃下所得Ti/IrO2-Ta2O5阳极表现出最高的强化电解寿命.
The anodes of Ti/IrO2-Ta2O5 were prepared using Pechini method. The microstructure and electrochemical properties of the anodes were studied with SEM, EDX, XRD, potentiodynamic polarization, cyclic voltammetry, electrochemical impedance spectroscopy and accelerated life test. It has been shown that the prepared oxide anodes have uniform surface composition, and there is no evident aggregation of IrO2 particles. Tantalum forms solid solution in the futile IrO2 phase. With the increase of the sintering temperature, the mutual solubility between iridium and tantalum increases, and the crystallite grains of the oxide coating become finer. Moreover, with rising of the sintering temperature, the electrocatalytic activity of the oxide electrode for oxygen evolution and the electrochemically active surface area are reduced. The Ti/IrO2-Ta2O5 anode prepared at 500 °C presents the longest service life.
参考文献
[1] | Trasatti S .[J].Electrochimica Acta,2000,45:2377. |
[2] | Xu L K;Scantlebury J D .[J].Journal of the Electrochemical Society,2003,150:B288. |
[3] | Scialdone O;Randazzo S;Galia A et al.[J].Electrochimica Acta,2009,54:1210. |
[4] | Ye ZG;Meng HM;Sun DB .Electrochemical impedance spectroscopic (EIS) investigation of the oxygen evolution reaction mechanism of Ti/IrO_2+MnO_2 electrodes in 0.5 m H_2SO_4 solution[J].Journal of Electroanalytical Chemistry: An International Journal Devoted to All Aspects of Electrode Kinetics, Interfacial Structure, Properties of Electrolytes, Colloid and Biological Electrochemistry,2008(1):49-54. |
[5] | Modmitsu M;Tamura H;Matsunaga M et al.[J].Journal of Applied Electrochemistry,2000,30:511. |
[6] | de Oliveira-Sousa A;da Silva M A S;Machado S A S et al.[J].Electrochimica Acta,2000,45:4467. |
[7] | Forti J C;Olivi P;de Andrade A R .[J].Electrochimica Acta,2001,47:913. |
[8] | Terezo A J;Pereira E C .[J].Materials Letters,2002,53:339. |
[9] | Terezo A J;Pereira E C .[J].Electrochimica Acta,1999,44:4507. |
[10] | Wang X;Tang D;Zhou J .[J].Journal of Alloys and Compounds,2007,430:60. |
[11] | Terezo A J;Pereira E C .[J].Electrochimica Acta,2000,45:4351. |
[12] | Ronconi C M;Pereira E C .[J].Journal of Applied Electrochemistry,2001,31:319. |
[13] | Xu L K;Xin Y L;Wang J T .[J].Electrochimica Acta,2009,54:1820. |
[14] | Hu JM.;Zhang HQ.;Cao CN. .Thermolytic formation and microstructure of IrO2+Ta2O5 mixed oxide anodes from chloride precursors[J].Thermochimica Acta: An International Journal Concerned with the Broader Aspects of Thermochemistry and Its Applications to Chemical Problems,2003(2):257-266. |
[15] | Chang C C;Wen T C;Yang C H et al.[J].Materials Chemistry and Physics,2009,115:93. |
[16] | Murakami Y;Tsuchiya S;Yahikozawa K et al.[J].Electrochimica Acta,1994,39:651. |
[17] | Camara O R;Trasatti S .[J].Electrochimica Acta,1996,41:419. |
[18] | da Silva L A;Alves V A;Silva M A P et al.[J].Electrochimica Acta,1997,42:271. |
[19] | Xu L K;Scantlebury J D .[J].Corrosion Science,2003,45:2729. |
[20] | Li B S;Lin A;Gan F X .[J].Transactions of Nonferrous Metals Society of China,2006,16:1193. |
[21] | Kristóf J;Szilágyi T;Horváth E et al.[J].Thermochimica Acta,2004,413:93. |
[22] | Vercesi G P;Salamin J Y;Comninellis Ch .[J].Electrochimica Acta,1991,36:991. |
[23] | Liu Y;Li Z Y;Li J H .[J].Acta Materialia,2004,52:721. |
[24] | Foti G;Mousty C;Reid V et al.[J].Electrochimica Acta,1998,44:813. |
[25] | Rolewicz J;Comninellis Ch;Plattner E et al.[J].CHIMIA,1988,75:42. |
[26] | Roginskaya Yu E;Morozova O V .[J].Electrochimica Acta,1995,40:817. |
[27] | Hu J M;Zhang J Q;Cao C N .[J].International Journal of Hydrogen Energy,2004,29:791. |
[28] | Wen T C;Hu C C .[J].Journal of the Electrochemical Society,1992,139:215. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%