欢迎登录材料期刊网

材料期刊网

高级检索

将粉末高能球磨,经压制、预烧、高温烧结和真空处理,制备Mo-0.1Zr(质量分数, 下同)和含有不同Ti含量的Mo-0.1Zr-nTi(n分别为0.4,0.55,0.7,0.9)合金.研究真空处理和Ti含量对Mo-0.1Zr合金性能和组织结构的影响.结果表明,真空处理能够使Mo-0.1Zr合金的性能大大提高,尤其使合金的延伸率达到25.6%,达到甚至超过了锻造态合金的延伸率,合金的断口也由真空处理前的沿晶断裂特征转变为明显的穿晶断裂.Ti的添加,使Mo-0.1Zr合金生成了(Mo,Ti)_xO_y第二相粒子,第二相粒子存在于晶界之间,并随着Ti添加量的增加而增加,从而使合金的力学性能随Ti添加量的增加而下降.

In order to reveal the effect of vacuum treatment and Ti content on the properties and microstructure of Mo-0.1Zr alloy, Mo-0.1Zr and Mo-0.1Zr-nTi (n=0.4, 0.55, 0.7 and 0.9) alloys were prepared via powder metallurgy processes and final vacuum treatment was adopted. The result shows that the mechanical properties of Mo-0.1Zr alloy were enhanced greatly by the vacuum treatment, especially the elongation of the alloy (25.6%), much higher than that of the forged Mo alloys. Simultaneously, obvious transgranular fracture was observed on the fracture surface after vacuum treatment instead of the intergranular fracture. It induces the generation of (Mo,Ti)_xO_y second-phase particles by adding element Ti into the Mo-0.1Zr alloy, which exists in the grain boundaries. With the increase of Ti content, the amount of second-phase particles increases and leads to the reduction of mechanical properties of the alloys.

参考文献

[1] Zheng J H;Bogaerts W F;Vancoillie I et al.[J].Fusion Engineering and Design,1991,18:179.
[2] Mrotzek T;Hoffmann A;Martin U .[J].International Journal of Refractory Metals and Hard Materials,2006,24:298.
[3] Cockeram B V .[J].Materials Science and Engineering,2006,418:120.
[4] Calderon H A;Kostorz G G .[J].Materials Science and Engineering A,1993,160(02):189.
[5] Cockeram B V .[J].Metallurgical and Materials Transactions,2002,33A:3685.
[6] 曹维成,刘静,任宜霞.掺杂不同微量元素对钼材性能的影响[J].稀有金属快报,2006(08):29-32.
[7] 张德尧.氧、氮、碳对钼和钼合金性能的影响[J].中国钼业,2003(02):20-25.
[8] Zhang Jiuxing;Liu Lu;Zhou Meiling et al.[J].International Journal of Refractory Metals and Hard Materials,1999,17:405.
[9] Cockeram BV;Smith RW;Snead LL .Tensile properties and fracture mode of a wrought ODS molybdenum sheet following fast neutron irradiation at temperatures ranging from 300 degrees C to 1000 degrees C[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,2005(2/3):165-184.
[10] Miller M K;Kenik E Α;Mousa M S et al.[J].Scripta Materialia,2002,46:299.
[11] Sharma I G;Chakraborty S P;Suri A K .[J].Journal of Alloys and Compounds,2005,393:122.
[12] Takanori Kadokura;Yutaka Hiraoka;Seiji Nakabayashi.[A].Busan,Korea:Korean Powder Metallurgy Institute:1153.
[13] 黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997
[14] 褚武扬.氢损伤和滞后断裂[M].北京:冶金工业出版社,1988
[15] 谭晓华,程晓英,徐晖.拉伸速率对Ni40 Ti50 Fe10合金环境氢脆的影响[J].材料科学与工艺,2006(05):532-534.
[16] Moerkurova H H.钼冶金[M].北京:冶金工业出版社,1984
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%