The reactivity of a photocatalyst is basically influenced by its surface atomic and linked electronic structure. Tuning different crystal facets is becoming an important strategy to optimize the reactivity of a photocatalyst for targeted reactions. Here we report a facile and new route of synthesizing a quasi-cubic-like WO3 crystal with a nearly equal percentage of {002}, {200} and {020} facets, and a rectangular sheet-like WO3 crystal with predominant {002} facet by controlling acidic hydrolysis of crystalline WB. As a result of electronic structure effects induced by crystal facet, the quasi-cubic-like WO3 crystal with a deeper valence band maximum shows a much higher O-2 evolution rate in photocatalytic water oxidation than the rectangular sheet-like WO3 crystal. The latter, with an elevated conduction band minimum of 0.3 eV, is able to photoreduce CO2 to generate CH4 in the presence of H2O vapor.
参考文献
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%