欢迎登录材料期刊网

材料期刊网

高级检索

The reactivity of a photocatalyst is basically influenced by its surface atomic and linked electronic structure. Tuning different crystal facets is becoming an important strategy to optimize the reactivity of a photocatalyst for targeted reactions. Here we report a facile and new route of synthesizing a quasi-cubic-like WO3 crystal with a nearly equal percentage of {002}, {200} and {020} facets, and a rectangular sheet-like WO3 crystal with predominant {002} facet by controlling acidic hydrolysis of crystalline WB. As a result of electronic structure effects induced by crystal facet, the quasi-cubic-like WO3 crystal with a deeper valence band maximum shows a much higher O-2 evolution rate in photocatalytic water oxidation than the rectangular sheet-like WO3 crystal. The latter, with an elevated conduction band minimum of 0.3 eV, is able to photoreduce CO2 to generate CH4 in the presence of H2O vapor.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%