欢迎登录材料期刊网

材料期刊网

高级检索

采用放电等离子(spark plasma sintering,简称SPS)烧结制备出了无粘结相硬质合金材料,并结合XRD、SEM、金相显微镜等分析测试手段,研究了原料粉末中碳、氧含量对无粘结相硬质合金的微观组织和性能的影响.结果表明,原料粉末中游离碳含量过高会造成烧结体晶粒的显著长大,氧含量较高会降低烧结体的致密度,从而导致烧结体的性能变差;采用纯度较高的原始粉末时,维氏硬度达到2566kg·f/mm~2,断裂韧性为6.2MPa/m~(1/2).另外,在500℃对原料粉末进行氢气预处理可以明显降低氧含量,在1700℃下可制备出相对密度达98.8%,维氏硬度为2731kg·f/mm~2,断裂韧性为6.16MPa/m~(1/2)的无粘结相硬质合金材料.

Bulk binderless ultrafine pure WC was obtained by the spark plasma sintering process(SPS).The phase ,microstructure and fracture surfaces of the binderless WC were studied by using X-ray diffraction analysis(XRD),optical microscopy and scanning electron microscopy(SEM).The experiment results show that,when free carbon of the initial power was too high,abnormal grain growth occurred;when the content of oxygen of the initial power was too high,the density of sintered decreased badly.The binderless WC sintered at 1700℃ for 120s showed almost full densification and exhibited excellent mechanical properties when using the best power,the Vickers hardness and fracture toughness obtained were 2566kg·f/mm~2 and 6.2MPa/m~(1/2).In addition,it was found that the content of oxygen could be reduced obviously when the initial WC power was pretreated in H2 atmosphere at 500℃.Then,the binderless tungsten carbide was prepared at 1700℃.The density,vickers hardness and fracture toughness of alloys is 98.8%,2731kg·f/mm~2 and 6.16MPa/m~(1/2) respectively.

参考文献

[1] 张建兵,李小强,龙雁,陈维平,李元元.高性能WC合金的研究进展[J].材料导报,2005(10):68-72.
[2] Suzuki H.Cemented Carbide and sintered hard materials[M].Tokyo:Maruzen Publishing Company,1986
[3] 李仁琼,刘铁梅.工艺参数对无粘结相硬质合金性能的影响[J].硬质合金,2005(01):23-26.
[4] Imasato S;Tokumoto K;Kitada T et al.[J].International Journal of Refractory Metals and Hard Materials,1997,13:305-312.
[5] Engqvist H;Botton G A;Axen N et al.[J].International Journal of Refractory Metals and Hard Materials,1998,16:309-313.
[6] Engqvist H.;Botton G.A. .Microstructure and Abrasive Wear of Binderless Carbides[J].Journal of the American Ceramic Society,2000(10):2491-2496.
[7] Cha SI.;Hong SH. .Microstructures of binderless tungsten carbides sintered by spark plasma sintering process[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):381-389.
[8] Arata P et al.[J].Nano-Structured Materials,1998,10(02):245-255.
[9] Sherif E E M .[J].Journal of Alloys and Compounds,2000,305:225-238.
[10] Fu L;Cao L H;Fan Y S .[J].Scripta Materialia,2001,44:1061-1068.
[11] Fougere G E;Weertman J R;Siegel R W et al.[J].Scripta Metallurgica et Materialia,1992,26:1879-1883.
[12] Omori M .[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2003,287:183-188.
[13] Kim H T;Choi D W;Kim J S et al.[J].Powder Metallurgy,2003,10:176-180.
[14] 周玉.陶瓷材料学[M].哈尔滨:哈尔滨工业大学出版社,1995
[15] Anstis G R;Chantikul P;Lawn B R et al.[J].Journal of the American Ceramic Society,1981,64:533-538.
[16] 张卫兵.WC、Co质量对超细硬质合金性能影响的研究[J].硬质合金,2003(03):157-160.
[17] 钱开友,王兴庆,何宝山,郭海亮,白佳声.碳含量对纳米硬质合金组织和性能的影响[J].上海大学学报(自然科学版),2002(05):433-436.
[18] 贾佐诚.烧结态硬质合金的HIP处理[J].粉末冶金工业,2000(05):22-25.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%