欢迎登录材料期刊网

材料期刊网

高级检索

The correlation between the creep rupture behaviour and the stacking fault energy of matrices of γ′strengthened superalloys has been studied dur- ing constant load creep.At high temperature and intermediate stress,the creep rupture time and strain strongly depend on the stacking fault energy of matrices rather than the creep friction stress,but at higher stress,the role of grain boundary carbides becomes more obvious. However,in the considerably extensive stress range investigated here,the mean creep rate is a power function of the stacking fault energy of matrices and the power index decreases with in- creasing initial applied stress.Particularly,at inter- mediate stresses the product of this index and the initial applied stress compensated by the shear modulus is same for two series of superalloys. Hence,this product may be a criterion predicting that the matrix deformation controls high tempera- ture creep rupture.

参考文献

[1]
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%