{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以粒径约150 nm的模板,通过均相沉淀法制备出Y(OH)3/复合微,煅烧除去模板,得到粒径约300 nm的纳米Y2O3空心.通过傅里叶红外光谱(FT-IR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和热失重分析(TG)以及X射线光电子能谱(XPS)等测试手段表征复合微和纳米Y2O3空心的形貌和结构.结果表明:空心由立方晶系纳米Y2O3构成,粒径约为300 nm,壳厚度约为20 nm.","authors":[{"authorName":"江学良","id":"7c9c4171-0e49-476c-8fa9-7375657cdd10","originalAuthorName":"江学良"},{"authorName":"杜银","id":"2fa8c350-9349-4ae5-8980-559f9aa1b9e7","originalAuthorName":"杜银"},{"authorName":"王维","id":"c500762e-b7f3-4a12-9562-ba6d4425eabe","originalAuthorName":"王维"},{"authorName":"杨浩","id":"066a5283-005d-408c-882b-11eac77138e7","originalAuthorName":"杨浩"},{"authorName":"任军","id":"9d5369bf-89d7-4c7c-af37-6d918c3497c3","originalAuthorName":"任军"}],"doi":"","fpage":"249","id":"7505e59a-c0b0-4daf-b2e6-5b4f593695c4","issue":"1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"0a6ee00a-4eda-4ff8-a6bf-bdb371e0bc5e","keyword":"模板","originalKeyword":"碳球模板"},{"id":"94fbcc94-cd6d-4998-af6c-6daaaaf1944f","keyword":"均相沉淀","originalKeyword":"均相沉淀"},{"id":"2681d787-47b8-4d8a-a97f-803a74bf0b77","keyword":"氧化钇","originalKeyword":"氧化钇"},{"id":"71020866-50c9-4d74-9041-b1465c711ef3","keyword":"空心","originalKeyword":"空心球"}],"language":"zh","publisherId":"xyjsclygc201401050","title":"均相沉淀模板法制备纳米Y2O3空心研究","volume":"43","year":"2014"},{"abstractinfo":"以葡萄糖、氟钛酸铵和氟硅酸铵为原料,采用一锅水热合成法在葡萄糖聚合形成的胶体表面原位生成了含有Ti/Si物种的前驱物实心微,再经高温焙烧脱除模板,制得Si掺杂的TiO2空心微.应用高分辨透射电镜、X射线衍射、X射线光电子能谱和N2吸附-脱附等手段对样品进行了表征.结果表明,Si进入到TiO2的晶格,形成的Si-O-Ti键不仅可有效抑制TiO2物相从锐钛矿向金红石转变,而且还能阻碍TiO2纳米晶在焙烧过程中快速长大.随着Si掺杂量的增加,组成空心微壳层的TiO2纳米晶的平均晶粒度逐渐减小,而空心微的比表面积和孔体积逐渐增大.以亚甲基蓝(MB)溶液为模拟污染物,考察了紫外光下Si掺杂TiO2空心微的光催化性能.结果表明,随着Si掺杂量的增加,TiO2空心微对MB溶液的降解效率显著升高;当Si的摩尔分数为0.5时,空心微的光催化效率最高,是P25的1.25倍.","authors":[{"authorName":"李纲","id":"634546b3-6cb7-4f36-8525-f5bc33f365e1","originalAuthorName":"李纲"},{"authorName":"刘昉","id":"8d4027aa-61d2-4d0f-94e3-42559327b0d8","originalAuthorName":"刘昉"},{"authorName":"阳启华","id":"20d57e2c-8f5a-4c51-ac21-c46e35e0aba8","originalAuthorName":"阳启华"},{"authorName":"张昭","id":"fd63e30b-8500-46f9-91c1-d5a15925218c","originalAuthorName":"张昭"}],"doi":"10.3724/SP.J.1088.2011.00819","fpage":"286","id":"09f68029-3e74-4857-bd85-f405fd64e89e","issue":"2","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"42f92398-4fc3-4e85-9247-b9f4bda745ec","keyword":"硅掺杂","originalKeyword":"硅掺杂"},{"id":"e560e10e-4664-4f3c-a1cb-63ddbc1acd5f","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"4369180e-55ad-4653-8476-bb2317e7857d","keyword":"模板","originalKeyword":"碳球模板"},{"id":"7403311d-fa53-4fab-a632-68201af99906","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"f859f4b8-ad0e-46f3-a14e-0958d61d8a47","keyword":"空心微","originalKeyword":"空心微球"},{"id":"b157e75c-08b1-4034-9727-c8993f24883a","keyword":"光催化","originalKeyword":"光催化"}],"language":"zh","publisherId":"cuihuaxb201102012","title":"Si掺杂对TiO2空心微微结构和光催化性能的影响","volume":"32","year":"2011"},{"abstractinfo":"以葡萄糖为原料水热合成作为模板剂,将其与TiO2纳米晶共混制备纳米多孔TiO2光阳极。采用场发射电子扫描电镜(SEM)、台阶仪、紫外-可见分光光度计(UV-Vis)等对TiO2薄膜的表面形貌、厚度和散射能力进行表征。研究发现,随着含量的增加,光阳极单位体积内的表面积先增加后减小;薄膜对光的散射能力也呈现同样趋势。采用所制备的光阳极组装染料敏化太阳能电池,性能测试结果表明,随着含量的增加,电池短路电流密度先增加,后减小。当加入量为TiO2纳米晶质量的3%时,电池光电转换效率达到最佳为5.15%。","authors":[{"authorName":"张亚","id":"e9b088ae-af4a-45d5-9833-3d2d8bc48e0c","originalAuthorName":"张亚"},{"authorName":"杨兵初","id":"28b7ebef-a77e-4cb6-b950-7ca006687f9b","originalAuthorName":"杨兵初"},{"authorName":"周聪华","id":"7861916a-a82a-46f5-b1be-b183c1bd9292","originalAuthorName":"周聪华"},{"authorName":"王丽丽","id":"62fa9fec-2903-47fe-a43e-3c3e1744eeb9","originalAuthorName":"王丽丽"},{"authorName":"童思超","id":"408ef723-962a-4615-85dc-0eaf4bd87275","originalAuthorName":"童思超"}],"doi":"","fpage":"2716","id":"80314b92-ce2e-4760-aff6-cb3a12cac76e","issue":"19","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"3377d22b-710f-4298-bdba-9b667dd35d1c","keyword":"染料敏化太阳能电池","originalKeyword":"染料敏化太阳能电池"},{"id":"fb25fad1-d48e-499f-bf25-fc4a4747098d","keyword":"","originalKeyword":"碳球"},{"id":"0f4c8a57-da7b-449e-a1e8-b9e3199ec26e","keyword":"多孔薄膜","originalKeyword":"多孔薄膜"},{"id":"3e1f82d4-0935-4509-8341-8146410d5cdf","keyword":"TiO2","originalKeyword":"TiO2"}],"language":"zh","publisherId":"gncl201219031","title":"模板剂对TiO_2光阳极微结构及其光电性能影响研究","volume":"43","year":"2012"},{"abstractinfo":"以明胶微模板, 采用层层自组装技术制备了明胶/SiO2/PAH复合微, 并用热水溶解模板得到了SiO2/PAH复合空腔微. 通过用ζ电位、TEM、IR、TG等测试手段对其样品进行表征分析. 结果表明, SiO2/PAH有效地组装在明胶微上, 形成了核壳式结构, 模板去除后得到空腔结构. 在溶解模板的过程中, 通过对明胶水解产物氨基酸含量的测定, 发现SiO2/聚电解质的存在具有一定的缓释性.","authors":[{"authorName":"丁素丽","id":"fb11eae8-a502-4827-ad0b-9c1055c6bf1a","originalAuthorName":"丁素丽"},{"authorName":"朱以华","id":"5715bd41-2d0d-47c4-a295-f6125c94ac63","originalAuthorName":"朱以华"},{"authorName":"杨晓玲","id":"3297ccf3-f7e5-4500-8a9b-750814796dfb","originalAuthorName":"杨晓玲"}],"categoryName":"|","doi":"","fpage":"991","id":"2d5c5fa0-4eca-42e5-b669-0cc5d51e4b53","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"d1f956fe-a7fe-47b9-9cce-fa78f034c155","keyword":"明胶微","originalKeyword":"明胶微球"},{"id":"1fd1c275-63aa-469a-93fd-ff63ef71fe0b","keyword":" composite microspheres","originalKeyword":" composite microspheres"},{"id":"37fa6e45-71e1-4b33-a2ee-a2e0ba429d7d","keyword":" hollow microspheres","originalKeyword":" hollow microspheres"},{"id":"47fe1655-6577-4df4-b610-286f971167f8","keyword":" layer-by-layer self-assembly","originalKeyword":" layer-by-layer self-assembly"},{"id":"98e03530-dd9e-4d1d-9bef-a6efa2c0c20f","keyword":" slow-releasing effect","originalKeyword":" slow-releasing effect"}],"language":"zh","publisherId":"1000-324X_2004_5_9","title":"以明胶为模板制备复合空腔微","volume":"19","year":"2004"},{"abstractinfo":"以明胶微模板, 采用层层自组装技术制备了明胶/SiO2/PAH复合微, 并用热水溶解模板得到了SiO2/PAH复合空腔微.通过用zeta电位、TEM、IR、TG等测试手段对其样品进行表征分析.结果表明, SiO2/PAH有效地组装在明胶微上, 形成了核壳式结构, 模板去除后得到空腔结构.在溶解模板的过程中, 通过对明胶水解产物氨基酸含量的测定, 发现SiO2/聚电解质的存在具有一定的缓释性.","authors":[{"authorName":"丁素丽","id":"1510d4e8-2fde-45c8-a14d-d4a3f6739353","originalAuthorName":"丁素丽"},{"authorName":"朱以华","id":"07c03055-e1a1-4d47-8192-c29c95bc4d4c","originalAuthorName":"朱以华"},{"authorName":"杨晓玲","id":"2c39296a-4f76-4e19-a28b-3d5c0493651e","originalAuthorName":"杨晓玲"}],"doi":"10.3321/j.issn:1000-324X.2004.05.005","fpage":"991","id":"af1507c0-5be6-4cd8-ab94-5c493440a7b5","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"9ae04b2b-e1f8-4f43-a0c1-6cf49b02171e","keyword":"明胶微","originalKeyword":"明胶微球"},{"id":"02805905-d818-4978-8967-a1ddf76cf4f8","keyword":"复合微","originalKeyword":"复合微球"},{"id":"6a953cb2-78c5-4f21-a3ed-7930c8ec781b","keyword":"空腔微","originalKeyword":"空腔微球"},{"id":"ffa8d268-dfca-4a9a-8b01-74894afa30e8","keyword":"层层自组装","originalKeyword":"层层自组装"},{"id":"c81b28df-2ef7-42d6-a0d5-dbefdfd1a6b7","keyword":"缓释性","originalKeyword":"缓释性"}],"language":"zh","publisherId":"wjclxb200405005","title":"以明胶为模板制备复合空腔微","volume":"19","year":"2004"},{"abstractinfo":"以白葡萄球菌作为模板,通过醋酸锌和三乙醇胺(TEA)反应成功得到ZnO空心微.采用SEM、TEM、XRD和TG表征所得的ZnO空心微,得到了空心微的基本形貌,并发现了细菌模板在高温下易去除的特点.还研究了不同细菌和三乙醇胺(TEA)加入量以及静置时间对空心微的影响,发现加入高浓度的细菌液和TEA溶液以及长时间的静置有利于空心微的制备.最后确定了细菌在整个ZnO空心微制备过程中的模板作用,但单纯的细菌不足以使ZnO覆盖在其表面形成空心微结构,需要对其表面进行修饰,而实验中加入的TEA就是用于修饰细菌表面的.","authors":[{"authorName":"吕伟","id":"95b815bb-5974-487b-bb69-1bb9392923a0","originalAuthorName":"吕伟"},{"authorName":"周明","id":"355bed6f-c202-4d62-9e17-f97ac88f3757","originalAuthorName":"周明"},{"authorName":"刘长隆","id":"905c4f73-dccf-48fb-b9e3-c57531f1f5d9","originalAuthorName":"刘长隆"}],"doi":"","fpage":"23","id":"c35dfc0f-6d08-439f-890c-fe9be72d4814","issue":"22","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"9154ac0a-a93e-4a2f-bb31-1d87b6685e9a","keyword":"ZnO","originalKeyword":"ZnO"},{"id":"b4508b75-97f1-46a4-aa3e-2ce2bfdb25f3","keyword":"白葡萄球菌","originalKeyword":"白葡萄球菌"},{"id":"e28c40a3-0606-467a-9146-4b6ea372adee","keyword":"空心微","originalKeyword":"空心微球"},{"id":"c1e431fa-8aa3-4bb0-892d-d89c5c7c1669","keyword":"模板","originalKeyword":"模板"},{"id":"df937af8-5d7f-4ef0-9a8c-6560c3c0db6f","keyword":"三乙醇胺","originalKeyword":"三乙醇胺"}],"language":"zh","publisherId":"cldb201222007","title":"微生物模板辅助制备ZnO空心微","volume":"26","year":"2012"},{"abstractinfo":"多孔材料在催化、吸附、能源领域具有广泛的应用价值,它具有比表面积大、导电和导热性高、化学稳定好、价格便宜等特点,受到了人们的广泛关注.综述了氧化硅模板法制备多孔材料的研究进展,并简要地阐述了各种氧化硅为模板制备多孔材料的制备过程和优缺点.最后总结和展望了目前的研究现状和今后的发展.","authors":[{"authorName":"李红芳","id":"10c400df-9ae0-47a3-bc56-d5cdc8db9a2e","originalAuthorName":"李红芳"},{"authorName":"席红安","id":"1dbae017-f9f9-4ec6-9327-ac9496e36c84","originalAuthorName":"席红安"},{"authorName":"王若钉","id":"6f66e33b-6ea5-47da-8a91-4ae5ca5470f6","originalAuthorName":"王若钉"}],"doi":"","fpage":"91","id":"189ac359-57f8-4c3f-859f-97587278c44d","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"c965edff-efff-40cc-8e0e-dfe428ad599c","keyword":"氧化硅","originalKeyword":"氧化硅"},{"id":"b5fe2c13-5b01-44f4-919b-f113f054f4cc","keyword":"模板","originalKeyword":"模板"},{"id":"91ab1cf6-f73c-4154-8934-0b7b716db81f","keyword":"多孔","originalKeyword":"多孔"},{"id":"9abb0e22-8fe4-4498-b9b5-475c0c713b5c","keyword":"材料","originalKeyword":"碳材料"}],"language":"zh","publisherId":"cldb200512025","title":"模板法制备多孔材料的研究","volume":"19","year":"2005"},{"abstractinfo":"以甲醛、2,4-二羟基苯甲酸、L-赖氨酸为碳源,F127作为软模板剂,采用软模板催化法制备出材料 GM。通过前驱体的 TG 和 FT-IR 测试确定材料煅烧温度为950℃,XRD 和 Raman 谱图证实材料具有典型石墨化结构, SEM 和 TEM 照片说明材料具有空心微结构,BET 结果表明材料呈双孔分布,平均孔径为3.04 nm,比表面积为450.59 m2/g。材料对苯蒸气有良好的吸附性能,静态吸附容量为835.26μmol/g,穿透时间τ0为9.86 min。","authors":[{"authorName":"杨阳","id":"d1418f4e-cc51-4336-9829-4674b286d2e6","originalAuthorName":"杨阳"},{"authorName":"朱玲","id":"11c6ff47-2b2f-4d4b-9271-8f2e6b0a33f4","originalAuthorName":"朱玲"}],"doi":"10.11896/j.issn.1005-023X.2015.16.004","fpage":"17","id":"b4e501f8-225e-4188-bcf8-cf856851986e","issue":"16","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"618ef615-c04c-4cee-ac8e-21e9fd9ec0b0","keyword":"软模板催化法","originalKeyword":"软模板催化法"},{"id":"24ffc401-c034-4c26-af63-1ccd1eb9c466","keyword":"石墨化碳","originalKeyword":"石墨化碳"},{"id":"c245264b-c2d6-45e6-aabf-f58a33d634ee","keyword":"空心微","originalKeyword":"空心微球"},{"id":"9e08bdc6-5a56-42d8-820e-25bbe1bf730c","keyword":"苯蒸气","originalKeyword":"苯蒸气"},{"id":"f5329cc8-65f8-45eb-9266-77ef74d15aaa","keyword":"吸脱附","originalKeyword":"吸脱附"}],"language":"zh","publisherId":"cldb201516004","title":"软模板催化法合成石墨化碳微及其吸附性能研究?","volume":"","year":"2015"},{"abstractinfo":"依据维系模板作用力的特点,将模板分为以分子间或分子内的弱相互作用维系特异形状的软模板和以共价键维系特异形状的硬模板.并对软模板法和硬模板法制备各种有机-无机复合微的最新研究给予了较系统的总结和评述.","authors":[{"authorName":"杨菊香","id":"58e57600-c988-41d0-96b9-b7b149ed795b","originalAuthorName":"杨菊香"},{"authorName":"宋少飞","id":"097e4861-6867-4dcb-8e42-36b74f2be962","originalAuthorName":"宋少飞"},{"authorName":"沈淑坤","id":"0a8ca14d-fb79-497b-bbf4-89482808a300","originalAuthorName":"沈淑坤"},{"authorName":"胡道道","id":"6789e449-7d50-46d2-82fb-b56c7da26693","originalAuthorName":"胡道道"}],"doi":"","fpage":"54","id":"a75372bc-c250-43d7-a6d7-23399bf35084","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"62436f92-dec9-47b5-9a60-4b2176709b65","keyword":"模板法","originalKeyword":"模板法"},{"id":"7910f951-6c43-4f67-a5aa-d1f4d718b9c0","keyword":"有机-无机复合微材料","originalKeyword":"有机-无机复合微球材料"},{"id":"a65f2265-8cc3-4d8f-95de-8fc7f43005fd","keyword":"软模板","originalKeyword":"软模板"},{"id":"b620583f-7c82-4bff-a064-978f3fc811a5","keyword":"硬模板","originalKeyword":"硬模板"}],"language":"zh","publisherId":"cldb200703015","title":"模板法制备新型有机-无机复合微材料研究进展","volume":"21","year":"2007"},{"abstractinfo":"利用纸作为原材料,通过卷曲、树脂浸渍、碳化预制备出具有层状结构的管状模板,之后在1550℃通过原位反应液相渗Si 0.5-1h,在常压烧结条件下制备出具有层状结构特征的SiC/Si管状陶瓷复合材料.采用XRD、SEM对模板反应前后的物相变化和显微结构进行了研究.结果表明了该材料的最终产物为B-SiC和si,且两者分布表现出明显的交替成层现象,呈现出层状陶瓷的结构特征.","authors":[{"authorName":"杨刚宾","id":"a1c58df3-cdd4-4b64-8582-0e6265983fe8","originalAuthorName":"杨刚宾"},{"authorName":"刘银娟","id":"0a3213a8-713b-4c0f-adbf-a758755dc0be","originalAuthorName":"刘银娟"},{"authorName":"乔冠军","id":"31e65117-d38e-4bf9-9fb1-826b5c938a75","originalAuthorName":"乔冠军"},{"authorName":"王红洁","id":"11e7c91b-d94a-4294-90b6-f4f59a36b0e1","originalAuthorName":"王红洁"}],"doi":"","fpage":"124","id":"24b8260c-1830-4e8e-aa9c-b9351662f84e","issue":"1","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"a45156e9-3d1a-4299-86ec-237646c30319","keyword":"碳化","originalKeyword":"碳化"},{"id":"c708a1e1-e713-440b-83dd-14bb25e9ae81","keyword":"复合陶瓷","originalKeyword":"复合陶瓷"},{"id":"7c18db03-ac2b-4c1c-9f0d-55b79fbe21e0","keyword":"层状结构","originalKeyword":"层状结构"}],"language":"zh","publisherId":"clkxygy201001027","title":"模板转化法制备管状SiC/Si复合陶瓷","volume":"18","year":"2010"}],"totalpage":1668,"totalrecord":16673}