欢迎登录材料期刊网

材料期刊网

高级检索

为研发一种具有高强度和高导电性的新型电接触导线,选择Cu-2Ag-0.5Y合金为实验材料。通过连续铸造、冷拉拔和时效处理工艺制得Cu-Ag-Y合金。采用显微硬度仪、导电率测试仪、扫描电镜和透射电镜,研究了不同时效温度和时间条件下预变形合金的显微组织与性能变化规律。结果表明,经500℃/4 h时效后,Cu-2Ag-0.5Y合金获得了最佳的性能组合,其显微硬度和导电率分别为166 Hv和82.2%IACS。Cu-2Ag-0.5Y的主要强化机制为加工硬化、第二相强化或界面强化。时效处理之前的冷变形可以加速Cu-Ag-Y合金基体中第二相的析出,并提高合金的综合性能。

In order to develop a new type of electrical contact wires with high strength and high electrical conductivity, Cu-2Ag-0.5Y alloy was selected as materials. Cu-Ag-Y alloy was prepared by continuous casting, cold drawing and aging treatment. By means of the analysis of microhardness, electrical conductivity, scanning electron microscopy, and transmission electron microscopy, the aging properties and microstructures of the Cu-Ag-Y alloy were investigated at different aging temperatures and time after different cold deformation. The results show that the Cu-2Ag-0.5Y alloy has an excellent combination of microhardness and electrical conductivity aged at 500℃ for 4 h, the microhardness and the electrical conductivity reach 166 Hv and 82.2% IACS, respectively. The main strengthening mechanisms for the Cu-2Ag-0.5Y alloy are the work hardening and the second phase or interfaces strengthening. It was suggested that cold deformation prior to aging treatment can accelerate the precipitation of the second phase, and improve the comprehensive properties of the Cu-Ag-Y alloy.

参考文献

[1] Y. Zhan;Y. Xu;Z. Yu .Cu-Cr-Zr alloy matrix composite prepared by powder metallurgy method[J].Powder Metallurgy,2006(3):253-257.
[2] XIE Haofeng,MI Xujun,HUANG Guojie,GAO Baodong,YIN Xiangqian,LI Yanfeng.Effect of thermomechanical treatment on microstructure and properties of Cu-Cr-Zr-Ag alloy[J].稀有金属(英文版),2011(06):650-656.
[3] Y.Z. Tian;J.J. Li;P. Zhang .Microstructures, strengthening mechanisms and fracture behavior of Cu-Ag alloys processed by high-pressure torsion[J].Acta materialia,2012(1):269-281.
[4] T. Spassov;L. Lyubenova;Y. Liu .Mechanochemical synthesis, thermal stability and selective electrochemical dissolution of Cu-Ag solid solutions[J].Journal of Alloys and Compounds,2009(1/2):232-236.
[5] X.C. He;Y.M. Wang;H.S. Liu .A study of the isothermal section of the Cu-Ag-Zr ternary system at 1023 K by diffusion triple technique[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2007(1/2):176-180.
[6] He XC;Wang H;Liu HS;Jin ZP .Thermodynamic description of the Cu-Ag-Zr system[J].Calphad: Computer Coupling of Phase Diagrams and Thermochemistry,2006(4):367-374.
[7] S. G Jia;X. M. Ning;P. Liu .Age Hardening Characteristics of Cu-Ag-Zr Alloy[J].Metals and Materials International,2009(4):555-558.
[8] Chengdong Xia;Mingpu Wang;Wan Zhang;Zhanyuan Kang;Yanlin Jia;Rui Zhang;Hongchun Yu;Genying Xu .Microstructure and Properties of a Hot Rolled-Quenched Cu-Cr-Zr-Mg-Si Alloy[J].Journal of Materials Engineering and Performance,2012(8):1800-1805.
[9] Jayakumar, P.K.;Balasubramanian, K.;Rabindranath Tagore, G..Recrystallisation and bonding behaviour of ultra fine grained copper and Cu-Cr-Zr alloy using ECAP[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:7-13.
[10] C. A. Poblano-Salas .High temperature properties of Cu-Cr-Zr alloys processed by conventional inverse extrusion of atomised powders and comparison with Conform consolidated powders[J].Powder Metallurgy,2009(2):124-134.
[11] Zhiqiang Wang;Yunbo Zhong;Zuosheng Lei .Microstructure and electrical conductivity of Cu-Cr-Zr alloy aged with dc electric current[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2009(1/2):172-175.
[12] Xin Wei;Jiping Wang;Zhimao Yang .Liquid phase separation of Cu-Cr alloys during the vacuum breakdown[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2011(25):7116-7120.
[13] X.J. Liu;Z.P.Jiang;C.P. Wang .Experimental determination and thermodynamic calculation of the phase equilibria in the Cu-Cr-Nb and Cu-Cr-Co systems[J].Journal of Alloys and Compounds,2009(1/2):287-296.
[14] Yao, DW;Meng, L .Effects of solute, temperature and strain on the electrical resistivity of Cu-Ag filamentary composites[J].Physica, B. Condensed Matter,2008(19/20):3384-3388.
[15] He J;Ji V;Meng L .Effects of strain and annealing on the intensity and distribution of crystal texture in Cu-12 wt.% Ag[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(1/2):305-313.
[16] Liu, JB;Zhang, L;Meng, L .Effects of rare-earth additions on the microstructure and strength of Cu-Ag composites[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):392-396.
[17] F. Misjak;P.B. Barna;A.L. Toth;T. Ujvari;I. Bertoti;G. Radnoczi .Structure and mechanical properties of Cu-Ag nanocomposite films[J].Thin Solid Films,2008(12):3931-3934.
[18] 贾淑果,刘平,宋克兴,郑茂盛,田保红,周根树.Cu-Ag-Zr合金的时效性能[J].材料热处理学报,2010(09):37-40.
[19] 宁远涛,张晓辉,秦国义,张婕.不同凝固条件制备的Cu-Ag合金原位纤维复合材料的结构与性质[J].贵金属,2005(03):39-50.
[20] 张晓辉,李永年,宁远涛,戴红.高强度、高导电性Cu-Ag合金的研究进展[J].贵金属,2001(01):47-52.
[21] Morris D G;Benghalem A;Morris-Munoz M A .Influence of solidification condition,thermomechanical processing,and alloying additions on the structure and properties of in situ composite Cu-Ag alloys[J].Scripta Materialia,1999,41(10):1123-1126.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%