欢迎登录材料期刊网

材料期刊网

高级检索

铝合金疲劳裂纹易沿粗大的杂质相粒子萌生,而合金的晶粒结构、晶界和晶粒取向、析出相等本征微观特征影响疲劳裂纹的扩展行为.从疲劳裂纹的萌生和扩展两方面较系统地分析了航空铝合金耐疲劳损伤性能与本征微结构之间的关系和作用机制以及最新的研究进展,并在此基础上提出了需要进一步研究的问题.

参考文献

[1] 杨守杰,戴圣龙.航空铝合金的发展回顾与展望[J].材料导报,2005(02):76-80.
[2] Nakai M;Eto T .New aspects of development of high stren-gth aluminum alloys for aerospace applications[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2000,285(10):62.
[3] Patton G.;Brechet Y.;Lormand G.;Fougeres R.;Rinaldi C. .Study of fatigue damage in 7010 aluminum alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1998(1/2):207-218.
[4] Robert P W;Wei P Y;Gangloff R P.Fracture mechanics:Perspectives and directions (twentieth symposium)[A].American:ASTM International,1989:184.
[5] 刘岗,郑子樵,杨守杰,戴圣龙,李世晨.2E12铝合金的疲劳性能与裂纹扩展行为[J].机械工程材料,2007(11):65-68,72.
[6] 陈铮 .铝锂合金疲劳裂纹萌生寿命和短裂纹扩展抗力[J].兵器材料科学与工程,1992,15(06):15.
[7] Suresh S;王中光.Fatigue of materials[M].北京:国防工业出版社,1993:109.
[8] Bowles C et al.The role of inclusions in fatigue crack ini-tiation in an aluminum alloy[J].International Journal of Fracture,1973,9:171.
[9] 郑子樵,陈圆圆,钟利萍,佘玲娟,翟同广.2524-T34合金疲劳裂纹的萌生和扩展行为[J].中国有色金属学报,2010(01):37-42.
[10] 杜凤山,闫亮,戴圣龙,杨守杰.高强铝合金疲劳特性研究[J].航空材料学报,2009(01):96-100.
[11] 丁传富,刘建中,吴学仁.TC4钛合金和7475铝合金的长裂纹和小裂纹扩展特性的研究[J].航空材料学报,2005(06):11-17.
[12] Merati A .A study of nucleation and fatigue behavior of an aerospace aluminum alloy 2024-T3[J].International Journal of Fatigue,2005,27:33.
[13] Morris W L;James M .Statistical aspects of fatigue crack nucleation from particles[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1976,7A:1161.
[14] Kung C;Fine M .Fatigue crack initiation and microcrack growth in 2024-T4 and 2124-T4 aluminum alloys[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1979,10A:603.
[15] Li J X;Zhai T;Garratt M D et al.Four-point-bend fatigue of AA2026 aluminum alloys[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2005,36A:2529.
[16] Merati A .A study of nucleation and fatigue behavior of an aerospace aluminum alloy 2024-T3[J].International Journal of Fatigue,2005,27:33.
[17] Xue Y;El Kadiri H;Horstmeyer MF;Jordon JB;Weiland H .Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy[J].Acta materialia,2007(6):1975-1984.
[18] Joel Payne;Greg Welsh;Robert J. Christ, Jr.;Jerrell Nardiello;John M. Papazian .Observations of fatigue crack initiation in 7075-T651[J].International Journal of Fatigue,2010(2):247-255.
[19] Suresh S et al.Mechanisms of slow fatigue crack growth in high strength aluminum alloys:Role of microstructure and environment[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1984,15A:369.
[20] Rading G O;Berry J T .On deviated and branched crack paths in Al-Li-X alloys[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1996,219:192.
[21] Vasudevan A K;Sadananda K;Rajan K .Role of microstructures on the growth of long fatigue cracks[J].International Journal of Fatigue,1997,1:151.
[22] Kamp N;Gao N;Starink M J et al.Influence of grain structure and slip planarity on fatigue crack growth in low alloying artificially aged 2xxx aluminium alloys[J].International Journal of Fatigue,2007,29:869.
[23] Lindigkeit J;Gysler A;Terlinde G et al.The effect of grain size on the fatigue crack propagation behavior of age-harde-ned alloys in inert and corrosive environment[J].Acta Me-tall,1979,27:1717.
[24] Carter R D;Lee E W;Starke E A Jr et al.The effect of microstructure and environment on fatigue crack closure of 7475 aluminum alloy[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1984,15:555.
[25] 李眉娟,胡海云,邢修三.多晶体金属疲劳寿命随晶粒尺寸变化的理论研究[J].物理学报,2003(08):2092-2095.
[26] Hanlon T et al.Grain size effects on the fatigue response of nanocrystallin metals[J].Scripta Materialia,2003,49:675.
[27] Starink M J;Gao N;Kamp N et al.Relations between microstructure,precipitation,age-forability and damage tole-rance of Al-Cu-Mg-Li (Mn,Zr,Sc) alloys for age forming[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2006,418:241.
[28] Suresh S .Crack deflection:Implications for the growth of long and short fatigue cracks[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1983,14:2375.
[29] Nageswararao M;Gerold V;Kralik G .Factors leading to grain-boundary fatigue crack propagation in Al-Zn-Mg alloys[J].Journal of Materials Science,1975,10:515.
[30] Khor KH;Buffiere JY;Ludwig W;Toda H;Ubhi HS;Gregson PJ;Sinclair I .In situ high resolution synchrotron x-ray tomography of fatigue crack closure micromechanisms[J].Journal of Physics. Condensed Matter,2004(33):S3511-S3515.
[31] Suresh S .Fatigue crack deflection and fracture surface contact:Micromechanical models[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1982,16A:249.
[32] Chen D.L.;Chaturvedl C. .Near-Threshold Fatigue Crack Growth Behavior of 2195 Aluminum-Lithium-Alloy-Prediction of Crack Propagation Direction and Influence of Stress Ratio[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2000(6):1531-1541.
[33] Wu X J;Wallace W;Raizenne M D et al.The orientation dependence of fatigue-crack growth in 8090 Al-Li plate[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1994,25A:575.
[34] Zhai T;Jiang X P;Li J X et al.The grain boundary geometry for optimum resistance to growth of short fatigue cracks in high strength Al-alloys[J].International Journal of Fatigue,2005,27:1202.
[35] Zhai T;Wilkinson A J;Martin J W .A crystallographic mechanism for fatigue crack propagation through grain boundaries[J].Acta Materialia,2000,48:4917.
[36] Bray G H;Glazov M;Rioja R J et al.Effect of artificial aging on the fatigue crack propagation resistance of 2000 series aluminum alloys[J].International Journal of Fatigue,2001,23:265.
[37] Blankenship Jr C P;Hornbogen E .Predictiong slip behavior in alloys containing shearable and strong particles[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1993,169:33.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%