欢迎登录材料期刊网

材料期刊网

高级检索

以不同浓度磷酸改性的HZSM-5为载体,采用溶胶-凝胶法制备得到TiO2/HZSM-5光催化剂,通过XRD、SEM、BET、FT-IR和XPS进行表征。结果表明,磷酸处理没有改变分子筛的晶体结构,对分子筛的表面形貌改变不大,负载后的TiO2包覆在分子筛表面。负载前后的TiO2表现为锐钛矿晶型,钛以四价钛的形式存在,氧化物的组成为TiO2。TiO2与HZSM-5没有发生化学键合作用,负载型光催化剂的比表面积随着磷酸浓度的增加而显著提高。活性艳红X-3B的降解率随磷酸浓度的增加而变化,最佳磷酸处理浓度为0.5mol/L。50%TiO2/0.5HZSM-5较TiO2有更高的光催化活性,紫外光照射2h可使活性艳红X-3B降解93.4%,而染料在TiO2上的降解率只有61.0%。

TiO2/HZSM-5 Was synthesized by a sol-gel method using the supporter of HZSM-5 modified by dif- ferent concentration of phosphoric acid. The photocatalysts were characterized by XRD, SEM, BET, FT-IR and XPS measurements. The results showed that phosphoric acid modification did not change crystalline struc- ture of ZSM-g zeolite and had minor effect on the surface morphology. TiO2 was coated on the surface of the ze-olite as TiO2 where titanium existed in its Ti4+ oxidation state. There was no direct chemical bonding between TiO2 and the zeolite. Surfaee area of the supported photocatalyst increased drastically with increasing phosphor- ic acid concentration. Degradation rate of reactive brilliant red X-3B varied with phosphoric acid concentration,leading to the optimal concentration of 0.5mol/L. 50% TiO2/0.5HZSM-5 showed much higher photocatalytic activity than TiO2, resulting in 93.4% degradation of the dye after 2 h of irradiation, compared with 61.0%degradation on TiO2.

参考文献

[1] Zielinska B;Grzechulska J;Grzmil B et al.[J].Applied Catalysis B:Environmental,2001,35(01):1-7.
[2] Mohamed R M;Ismail A A;Othmanb I et al.[J].Journal of Molecular Catalysis A:Chemical,2005,238:151-157.
[3] 范广,林诚.β分子筛的改性研究进展[J].分子催化,2005(05):408-417.
[4] 张文杰,朱圣龙,李瑛,王福会,何红波.沉积时间对磁控反应溅射制备TiO2薄膜性能的影响[J].功能材料,2008(11):1785-1788.
[5] Femando D;Rubi R;Pablo C .[J].Applied Catalysis A:General,2002,236:235-243.
[6] 杨春;须沁华 .[J].物理化学学报,1998,2(02):169-172.
[7] 傅吉全,刘红茹.补铝改性β沸石对烷基化反应的影响[J].工业催化,2003(12):40-43.
[8] 王莅,余少兵,李永红,陈洪钫.水蒸气处理条件对β沸石合成MTBE催化性能的影响[J].化学反应工程与工艺,2001(01):35-38,54.
[9] 李永红,余少兵,张香文,王钰,宋玉兰.改性β沸石催化合成乙基叔丁基醚[J].石油学报,2001(z1):89-94.
[10] 宋绵新,周天亮,王峰.TiO2光催化剂改性掺杂与负载技术研究进展[J].材料导报,2006(08):16-20.
[11] Okte A N;Yilmaz O .[J].Applied Catalysis A:General,2009,345:132-133.
[12] Masato T;Takashi K;Manabu H et al.[J].Journal of Catalysis,2007,246:235-240.
[13] Marci G;Augugliaro V;Munoz L et al.[J].Journal of Physical Chemistry B,2001,105:1026-1045.
[14] 姜东,徐耀,侯博,吴东,孙予罕.SiO2/TiO2催化剂的制备及其光催化性能[J].无机材料学报,2008(05):1080-1084.
[15] LiQ;Su H J;Tan T W .[J].Biochem EngJ,2008,38:212-218.
[16] 李越湘,王添辉,彭绍琴,吕功煊,李树本.Eu3+、Si4+共掺杂TiO2光催化剂的协同效应[J].物理化学学报,2004(12):1434-1439.
[17] 方玉堂,易立群,刘艳山,高学农.陶瓷基钛掺杂硅胶块体吸附剂研究[J].化学学报,2006(06):515-520.
[18] Pouilleau J;Devilliers D;Groult H.[J].Journal of Materials Science,1997:3215645-3215651.
[19] Reddy B M;Ganesh I;Reddy E P .[J].Journal of Materials Science Letters,1997,101:1769-1774.
[20] Chiker F;Nogier J Ph;LaunaY F et al.[J].ApplCatal A,2003,243:309-321.
[21] 张盈珍 .[J].石油化工,1992,21(07):484-486.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%