欢迎登录材料期刊网

材料期刊网

高级检索

利用力学性能测试、光学显微镜、透射电镜观察等方法,阐明了回火热处理对低屈强比高强度钢组织与力学性能的影响规律.研究表明,回火温度对低屈强比高强度钢的组织和力学性能具有决定性影响.回火前,试验钢显微组织主要由细小板条状和粒状贝氏体组成,还含有少量铁素体及一些M/A岛.随回火温度提升,板条贝氏体逐渐合并长大,板条宽度增加,M/A岛分解,抗拉强度和冲击韧性下降,而屈服强度保持稳定,导致屈强比升高.M/A岛以块状和链条状形态存在,位于板条之间或贝氏体/铁素体边界.较低的回火温度可获得高强度、高韧性和低屈强比钢,这主要归功于其细小的板条组织和稳定的M/A岛.

参考文献

[1] Barsom J M.High performance steels and their use in structures[A].Cleveland,Ohio,1995:3-11.
[2] S. Das;A. Ghosh;S. Chatterjee;P. Ramachandra Rao .The effect of cooling rate on structure and properties of a HSLA forging[J].Scripta materialia,2003(1):51-57.
[3] De Cooman BC .Structure-properties relationship in TRIP steels containing carbide-free bainite[J].Current opinion in solid state & materials science,2004(3/4):285-303.
[4] Zhenghua Tang;Waldo Stumpf .The effect of microstructure and processing variables on the yield to ultimate tensile strength ratio in a Nb-Ti and a Nb-Ti-Mo line pipe steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(1/2):391-402.
[5] Z. Li;D. Wu .Study of the high strength and low yield ratio cold forging steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(0):142-148.
[6] Yang D Z;Sun X W;Lei T C .Effect of intercritical quenching on microstructure and tensile properties of steels 15 and 15Mn2Nb[J].Journal of Materials Science,1983,18(09):2727-2731.
[7] Kim N J;Thomas G .Effects of the constituents on the mechanical behavior of low carbon steels[J].Scripta Metall,1984,18(08):817-820.
[8] Shikanai N;Kagawa H;Kurihara K .Influence of microstructure on yielding behavior of heavy gauge high strength steel plates[J].ISIJ International,1992,32(03):335-342.
[9] Kim C .Modeling tensile deformation of dual-phase steel[J].Metallurgical and Materials Transanction A,1988,19(05):1263-1268.
[10] Y.M. KIM;S.K. KIM;Y.J. LIM .Effect of Microstructure on the Yield Ratio and Low Temperature Toughness of Linepipe Steels[J].ISIJ International,2002(12):1571-1577.
[11] HAYASHI Kenji;NAGAO Akihide;MATSUDA Yutaka .550 and 610 MPa Class High-strength Steel Plates with Excellent Toughness for Tanks and Penstocks Produced Using Carbide Morphology Controlling Technology[J].JFE technical report,2008(11):19-25.
[12] NAGAO Akihide;ITO Takayuki;OBINATA Tadashi .Development of YP 960 and 1 100 MPa Class Ultra High Strength Steel Plates with Excellent Toughness and High Resistance to Delayed Fracture for Construction and Industrial Machinery[J].JFE technical report,2008(11):13-18.
[13] Pontremoli M;Bufalini P;Aprile A et al.Development of grade API X80 pipeline steel plates produced by controlled rolling[J].Metals and Technology,1984(11):504-514.
[14] 杨浩,杨汉,曲锦波.热处理工艺对690 MPa级低屈强比高强钢组织性能的影响[J].材料热处理学报,2013(05):137-142.
[15] 康永林,陈庆军,王克鲁,孙浩,于浩.700MPa级低碳贝氏体钢的热处理工艺研究[J].材料热处理学报,2005(03):96-99.
[16] Remesh C Sharma.Principles of Heat Treatment of Steel[M].New Age International,1996:187-188.
[17] Yang You;Chengjia Shang;Liang Chen;Sundaresa Subramanian .Investigation on the crystallography of the transformation products of reverted austenite in intercritically reheated coarse grained heat affected zone[J].Materials & design,2013(Jan.):485-491.
[18] Kim B C;Lee S;Kim N J et al.Microstructure and local brittle zone phenomena in high-strength low-alloy steel welds[J].METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE,1991,22(01):139-149.
[19] Lee S;Kim B C;Kwon D .Correlation of microstructure and fracture properties in weld heat-affected zones of thermomechanically controlled processed steels[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1992,23(10):2803-2816.
[20] Zhou, Q.;Qian, L.;Tan, J.;Meng, J.;Zhang, F..Inconsistent effects of mechanical stability of retained austenite on ductility and toughness of transformation-induced plasticity steels[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:370-376.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%